

PEARSON

At Pearson, we have a simple mission: to help people make more of their lives through learning.

We combine innovative learning technology with trusted content and educational expertise to provide engaging and effective learning experiences that serve people wherever and whenever they are learning.

From classroom to boardroom, our curriculum materials, digital learning tools and testing programmes help to educate millions of people worldwide – more than any other private enterprise.

Every day our work helps learning flourish, and wherever learning flourishes, so do people.

To learn more please visit us at www.pearson.com/uk.

Practical Skills in Biology

Sixth Edition

Allan Jones Rob Reed Jonathan Weyers

Pearson Education Limited

Edinburgh Gate Harlow CM20 2JE United Kingdom Tel: +44 (0)1279 623623 Web: www.pearson.com/uk

First published 1994 (print)
Second edition 1998 (print)
Third edition 2003 (print)
Fourth edition 2007 (print)
Fifth edition 2012 (print and electronic)

Sixth edition published 2016 (print and electronic)

© Pearson Education Limited 1994, 2007 (print)

© Pearson Education Limited 2012, 2016 (print and electronic)

The rights of Jonathan D.B. Weyers, Allan M. Jones and Robert Reed to be identified as authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

The print publication is protected by copyright. Prior to any prohibited reproduction, storage in a retrieval system, distribution or transmission in any form or by any means, electronic, mechanical, recording or otherwise, permission should be obtained from the publisher or, where applicable, a licence permitting restricted copying in the United Kingdom should be obtained from the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

The ePublication is protected by copyright and must not be copied, reproduced, transferred, distributed, leased, licensed or publicly performed or used in any way except as specifically permitted in writing by the publishers, as allowed under the terms and conditions under which it was purchased, or as strictly permitted by applicable copyright law. Any unauthorised distribution or use of this text may be a direct infringement of the authors' and the publisher's rights and those responsible may be liable in law accordingly.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

Contains public sector information licensed under the Open Government Licence (OGL) v3.0. http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/.

The screenshots in this book are reprinted by permission of Microsoft Corporation.

Pearson Education is not responsible for the content of third-party internet sites.

ISBN: 978-1-292-09432-8 (print) 978-1-292-09436-6 (PDF) 978-1-292-09434-2 (eText)

British Library Cataloguing-in-Publication Data

A catalogue record for the print edition is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for the print edition is available from the Library of Congress

10 9 8 7 6 5 4 3 2 1 20 19 18 17 16

Print edition typeset in Times NR MT Pro 10/12 by Lumina Datamatics Print edition printed in Malaysia

NOTE THAT ANY PAGE CROSS REFERENCES REFER TO THE PRINT EDITION

Contents

	List of boxes	viii
	Preface to the sixth edition	xi
	For the student	XII
	Acknowledgements List of abbreviations	xiii xiv
	List of abbreviations	AIV
	Study and examination skills	1
1.	The importance of transferable skills	3
2.	Managing your time	9
3.	Working with others	13
4.	Taking notes from lectures and texts	18
5.	Learning effectively	23
6.	Revision strategies	30
7.	Assignments and exams	35
8.	Preparing your curriculum vitae	45
	Information technology and learning resources	51
9.	Finding and citing published information	53
10.	Evaluating information	60
11.	Using online resources	68
12.	Using word processors, databases and other packages	78
13.	Using spreadsheets	85
	Communicating information	91
14.	Organising a poster display	93
15.	Giving a spoken presentation	98
16.	General aspects of scientific writing	104
17.	Writing essays	111
18.	Reporting practical and project work	114
19.	Writing literature surveys and reviews	119
	Fundamental laboratory techniques	123
20.	Essentials of practical work	125
21.	Bioethics	128
22.	Health and safety	136
23.	Working with liquids	139
24.	Basic laboratory procedures	145
25.	Principles of solution chemistry	155
26.	pH and buffer solutions	163

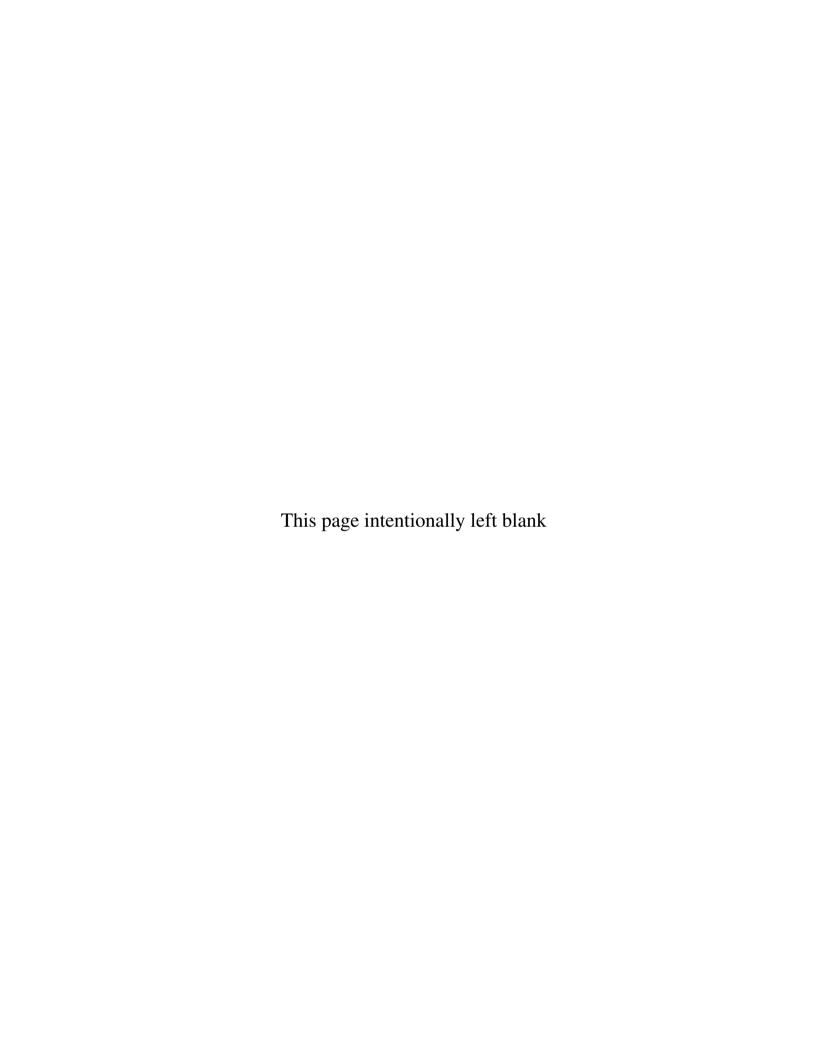
Contents

	The investigative approach	171
27.	The principles of measurement	173
28.	SI units and their use	177
29.	Making observations	182
30.	Drawings and diagrams	185
31.	Basic fieldwork procedures	192
32.	Samples and sampling	196
33.	Scientific method and design of experiments	201
34.	Making notes of practical work	209
35.	Project work	214
	Obtaining and identifying specimens	219
36.	Collecting animals and plants	221
37.	Fixing and preserving animals and plants	225
38.	Collecting and isolating microbes	230
39.	Naming and classifying organisms	235
40.	Identifying plants and animals	240
41.	Identifying microbes	247
	Examining specimens and samples	253
42.	The purpose and practice of dissection	255
43.	Introduction to microscopy	261
44.	Preparing specimens for light microscopy	265
45.	Setting up and using a light microscope	271
46.	Interpreting microscope images	277
47.	Sterile technique	283
48.	Cell culture	290
49.	Working with animal and plant tissues and cells	298
50. 51.	Photography and imaging Measuring growth and responses	306 313
51. 52.	Measuring growth and responses Fundamentals of chemical analysis	320
53.	Calibration and quantitative analysis	326
55.	Calibration and quantitative analysis	320
	Environmental investigations	333
54.	Ecological analyses	335
55.	Analysis of aquatic environments	345
56.	Analysis of soils and sediments	354
57.	Measuring atmospheric variables	364
58.	Measuring light	371
	Advanced analytical techniques	375
59.	Immunological methods	377
60.	Enzyme studies	386
61.	Mendelian genetics	394

62.	Fundamental molecular biology techniques	401
63.	Using stable isotopes	410
64.	Using radioisotopes	416
65.	Measuring oxygen content	425
66.	Photosynthesis and respiration	431
67.	Centrifugation	441
68.	Spectroscopic techniques	447
69.	Chromatography	454
70.	Electrophoresis	462
	Analysis and presentation of data	469
71.	Analysis and presentation of data Manipulating and transforming raw data	469 471
71. 72.		
	Manipulating and transforming raw data	471
72.	Manipulating and transforming raw data Using graphs	471 475
72. 73.	Manipulating and transforming raw data Using graphs Presenting data in tables	471 475 488
72. 73. 74.	Manipulating and transforming raw data Using graphs Presenting data in tables Hints for solving numerical problems	471 475 488 493
72. 73. 74. 75.	Manipulating and transforming raw data Using graphs Presenting data in tables Hints for solving numerical problems Descriptive statistics	471 475 488 493 504
72. 73. 74. 75.	Manipulating and transforming raw data Using graphs Presenting data in tables Hints for solving numerical problems Descriptive statistics	471 475 488 493 504
72. 73. 74. 75.	Manipulating and transforming raw data Using graphs Presenting data in tables Hints for solving numerical problems Descriptive statistics Choosing and using statistical tests	471 475 488 493 504 515

Companion Website

For open-access **student resources** specifically written to complement this textbook and support your learning, please visit **www.pearsoned.co.uk/practicalskills**


Lecturer Resources

For password-protected online resources tailored to support the use of this textbook in teaching, please visit www.pearsoned.co.uk/practicalskills

List of boxes

1.1	How to carry out a personal skills audit	6
2.1	Tips for effective planning and working	12
4.1	Some abbreviations commonly used in note-taking	19
4.2	The SQ3R technique for skimming texts	22
5.1	How to diagnose your learning preferences using the VARK scheme	25
5.2	How to accommodate different lecturers' teaching styles	27
6.1	How to use past exam papers in your revision	32
6.2	How to prepare and use a revision timetable	32
6.3	How to revise actively	33
7.1	Problem-based learning (PBL)	36
7.2	Writing under exam conditions	38
7.3	Reasons for poor exam answers to essay-style questions	39
7.4	Strategies for combating the symptoms of exam anxiety	43
8.1	The structure and components of a typical CV and covering letter	47
10.1	How to avoid plagiarism and copyright infringement	61
11.1	Important guidelines for using PCs and networks	69
11.2	Getting to grips with e-learning	70
11.3	Useful tips for using search engines	72
11.4	Getting the most from Google searches	73
11.5	How to evaluate information on the Web	75
14.1	How to create a poster using PowerPoint	96
15.1	Tips on preparing and using <i>PowerPoint</i> slides in a spoken presentation	99
15.2	Hints on spoken presentations	102
16.1	How to achieve a clear, readable style	107
16.2	Using appropriate writing styles for different purposes (with examples)	108
16.3	Improve your writing ability by consulting a personal reference library	109
18.1	The structure of reports of experimental work	115
18.2	Steps in producing a scientific paper	117
19.1	How to analyse a topic using the SPSER approach	120
21.1	A step-wise approach to making ethical decisions	131
21.2	A step-wise approach to conducting ethical research	133
23.1	Using a pipettor (autopipettor) to deliver accurate, reproducible volumes of liquid	141
23.2	Safe working with all arrivals	143
24.1	Safe working with chemicals	146
24.2	How to make up an aqueous solution of known concentration from solid material	147
24.3 25.1	How to use Vernier calipers Useful procedures for calculations involving molar concentrations	151 156
26.1	Using a glass pH electrode and meter to measure the pH of a solution	166
28.1	How to interconvert values between some redundant units and the SI	179
30.1	Checklist for making a good diagram	188
31.1	Questions you should consider before carrying out a field project	194
33.1	Checklist for designing and performing an experiment	204
33.2	How to use random number tables to assign subjects to positions and treatments	205
35.1	How to write a project proposal	215
38.1	Differential media for bacterial isolation: an example	232
39.1	Basic rules for the writing of taxonomic names	237
40.1	Example of a bracketed key	241
40.2	Example of an indented key	241
40.3	Example of a multi-access key	243
41 1	Preparation of a heat-fixed Gram-stained smear	249

Tips for improving dissection technique 1. Problems in light microscopy and possible solutions 1. How to use a counting chamber or haemocytometer 1. How to make a plate count of bacteria using an agar-based medium 1. Sterile technique and its application to animal and plant cell culture 1. Sterile technique and its application to animal and plant cell culture 1. The stages involved in preparing and using a calibration curve 1. How to use a spreadsheet (Microsoft Excel) to produce a linear regression plot 1. Marking animals to study ecological populations 1. Measuring age in organisms 1. Measuring age in organisms 1. How to determine suspended sediment concentration 1. How to determine the BOD of a water sample 1. How to measure the bulk density of a soil or sediment 1. How to measure the bulk density of a soil or sediment 1. How to measure the grain size distribution of soils and sediments by dry sieving 1. How to site a weather station and specific meteorological sensors 1. How to carry out immunodiffusion assays 1. How to carry out immunodiffusion assays 1. How to carry out immunodiffusion assays 1. How to perform an ELISA assay 1. Methods of determining the amount of protein in an aqueous solution 1. Types of cross and what you can (and cannot) learn from them 1. Example of a Chi² (χ²) test 1. How to carry out the polymerase chain reaction (PCR) 1. Bioinformatics-Internet resources 1. How to carry out the polymerase chain reaction of dissolved oxygen in water 1. How to carry out the polymerase chain reaction of dissolved oxygen in water 1. How to carry out the polymerase chain reaction of dissolved oxygen in water 1. How to carry out the proper or a preadsheet for use in coursework reports and dissertations 1. How to carry out Speed bench centrifuge 1. How to use a colorimeter 1. How to use a colorimeter 1. How to use a colorimeter 1. How to use a pectrophotometer 1. How to use	42.1	Basic stages of an animal dissection	258
45.1 Problems in light microscopy and possible solutions 48.2 How to use a counting chamber or haemocytometer 48.2 How to make a plate count of bacteria using an agar-based medium 49.1 Sterile technique and its application to animal and plant cell culture 59.1 Mutagenicity testing using the Ames test – an example of a widely used bioassay 59.2 The stages involved in preparing and using a calibration curve 59.2 How to use a spreadsheet (Nicrosoft Excel) to produce a linear regression plot 59.2 Marking animals to study ecological populations 59.2 Measuring age in organisms 59.2 How to determine suspended sediment concentration 59.2 How to determine suspended sediment concentration 59.3 How to determine the BOD of a water sample 59.4 How to measure the bulk density or inadiance using a state of the own of the organic content of soil and sediment samples using the loss on ignition (LOI) techniquent of the own of the organic content of soil and sediments by dry sieving 59.1 How to measure the grain size distribution of soils and sediments by dry sieving 59.2 How to measure the grain size distribution of soils and sediments by dry sieving 59.3 How to site a weather station and specific meteorological sensors 59.4 Measuring photon flux density or irradiance using a battery-powered radiometer 59.1 How to carry out immunodiffusion assays 59.2 How to perform an ELSA assay 59.3 How to perform an ELSA assay 59.4 Methods of determining the amount of protein in an aqueous solution 50.1 Types of cross and what you can (and cannot) learn from them 50.2 Bioinformatics-Internet resources 50.3 How to carry out the polymerase chain reaction (PCR) 50.4 Bioinformatics-Internet resources 50.5 How to carry out a carry out the polymerase chain reaction of dissolved oxygen in water 50.6 How to carry out a Carry out decrease a carrier of O ₂ consumption or production 50.6 How to carry out a Carry out a carry out a carry out the windler method for determination of dissolved oxygen in water 50.6 How to carry out a Carry out a garph 51. H	42.2		259
How to use a counting chamber or haemocytometer 19.1 How to make a plate count of bacteria using an agar-based medium 19.1 Sterile technique and its application to animal and plant cell culture 19.1 Mutagenicity testing using the Ames test - an example of a widely used bioassay 19.2 How to use a spreadsheet (Microsoft Excel) to produce a linear regression plot 19.3 Marking animals to study ecological populations 19.4 Measuring age in organisms 19.5 Measuring age in organisms 19.5 Measuring age in organisms 19.5 Move to determine the BOD of a water sample 19.6 How to determine the BOD of a water sample 19.6 How to measure the bulk density of a soil or sediment 19.6 How to measure the grain size distribution of soils and sediment samples using the loss on ignition (LOI) technique 19.6 How to measure the grain size distribution of soils and sediments by dry sieving 19.6 How to site a weather station and specific meteorological sensors 19.6 How to site a weather station and specific meteorological sensors 19.6 How to carry out immunodiffusion assays 19.6 How to perform an ELISA assay 19.7 How to perform an ELISA assay 19.8 Methods of determining the amount of protein in an aqueous solution 19.7 Types of cross and what you can (and cannot) learn from them 19.6 Example of a Chi² (x²) test 19.6 How to carry out the polymerase chain reaction (PCR) 19.6 Bioinformatics—Internet resources 19.7 How to set up a Clark (Rank) oxygen electrode 19.8 How to set up a Clark (Rank) oxygen electrode 19. How to set up a Clark (Rank) oxygen electrode 19. How to set up a Clark (Rank) oxygen electrode 19. How to use a solorimeter 19. How to use a spectrophotometer 19. How to carry out agarose gel electrophoresis of DNA 10. How to carry out agarose gel electrophoresis of DNA 10. How to carry out agarose gel electrophoresis of DNA 10. How to carry out agarose gel electrophoresis of DNA 10. Checklist for preparing a table 10. How to use	45.1		273
How to make a plate count of bacteria using an agar-based medium Sterile technique and its application to animal and plant cell culture The stages involved in preparing and using a calibration curve How to use a spreadsheet (Microsoft Excel) to produce a linear regression plot Marking animals to study ecological populations Measuring age in organisms Measuring age in organisms How to determine suspended sediment concentration How to determine suspended sediment concentration How to determine usupended sediment concentration How to measure the BOD of a water sample How to measure the organic content of soil and sediment samples using the loss on ignition (LOI) technique How to measure the organic content of soil and sediment samples using the loss on ignition (LOI) technique How to measure the grain size distribution of soils and sediments by dry sieving How to measure the station and specific meteorological sensors Measuring photon flux density or irradiance using a battery-powered radiometer How to carry out immunodiffusion assays How to carry out immunodiffusion assays How to carry out immunodiffusion assays Methods of determining the amount of protein in an aqueous solution Types of cross and what you can (and cannot) learn from them Example of a Chi² (x²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to to serve a chart recorder trace to a rate of O ₂ consumption or production How to carry out the Winkler method for determination of dissolved oxygen in water How to use a spectrophotometer How to use a spectrophotometer How to use a spectrophotometer How to carry out agarose gel electrophoresis of DNA How to carry out agarose gel electrophoresis of DNA How to carry o	48.1		294
Mutagenicity testing using the Ames test - an example of a widely used bioassay 1 he stages involved in preparing and using a calibration curve 3.1 How to use a spreadsheet (Microsoft Excel) to produce a linear regression plot 3.2 Marking animals to study ecological populations 3.3 Measuring age in organisms 3.4 Measuring age in organisms 3.5 How to determine suspended sediment concentration 3.6 How to determine suspended sediment concentration 3.6 How to determine the BOD of a water sample 3.6 How to measure the bulk density of a soil or sediment 3.6 How to measure the bulk density of a soil or sediment 3.6 How to measure the organic content of soil and sediment samples using the loss on ignition (LOI) techniques 3.6 How to measure the grain size distribution of soils and sediments by dry sieving 3. How to site a weather station and specific meteorological sensors 3. Measuring photon flux density or irradiance using a battery-powered radiometer 3. How to carry out immunodiffusion assays 3. How to cross and what you can (and cannot) learn from them 3. Example of a Chif (x²) test 3. How to carry out the polymerase chain reaction (PCR) 3. Bioinformatics-Internet resources 4. How to carry out the polymerase chain reaction (PCR) 4. Bioinformatics-Internet resources 4. How to determine the specific activity of an experimental solution 4. Tips for preparing samples for liquid scintillation counting 4. How to counce a dark (Rank) oxygen electrode 4. How to use a low-speed bench centrifuge 4. How to use a spectrophotometer 4. How to use a lame photometer 5. How to use a spectrophotometer 6. How to carry out agarose gel electrophoresis of DNA 6. How to carry out agarose gel electrophoresis of DNA 6. How to carry out agarose gel electrophoresis of DNA 6. How to carry	48.2		295
The stages involved in preparing and using a calibration curve How to use a spreadsheet (Microsoft <i>Excel</i>) to produce a linear regression plot Marking animals to study ecological populations Measuring age in organisms How to determine suspended sediment concentration How to determine the BOD of a water sample How to measure the bulk density of a soil or sediment How to measure the prain size distribution of soils and sediment samples using the loss on ignition (LOI) techniques How to measure the grain size distribution of soils and sediments by dry sieving How to site a weather station and specific meteorological sensors Measuring photon flux density or irradiance using a battery-powered radiometer How to carry out immunodiffusion assays How to perform an ELISA assay Methods of determining the amount of protein in an aqueous solution Types of cross and what you can (and cannot) learn from them Example of a Chi² (χ²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tipps of preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O ₂ consumption or production How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a sectrophotometer How to use a flame photometer How to use a sectrophotometer How to use a flame photometer How to carry out sparsose gel electrophoresis of DNA How to carry out types and the section of the propersion of the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations Checklist for preparing a table How to use a vord processor or a spreadsheet to create a table for use in coursework reports and disserta	49.1	Sterile technique and its application to animal and plant cell culture	302
How to use a spreadsheet (Microsoft Excel) to produce a linear regression plot Marking animals to study ecological populations Marking animals to study ecological populations How to determine suspended sediment concentration How to determine the BOD of a water sample How to measure the bulk density of a soil or sediment How to measure the bulk density of a soil or sediment How to measure the grain size distribution of soils and sediments by dry sieving How to measure the grain size distribution of soils and sediments by dry sieving How to site a weather station and specific meteorological sensors Measuring photon flux density or irradiance using a battery-powered radiometer How to carry out immunodiffusion assays How to perform an ELISA assay Methods of determining the amount of protein in an aqueous solution Types of cross and what you can (and cannot) learn from them Example of a Chif' (x') test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O ₂ consumption or production How to convert a chart recorder trace to a rate of O ₃ consumption or production How to use a colorimeter How to use a spectrophotometer How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a voor processor or a spreadsheet to create a table for use in coursework reports and dissertates to create and amend graphs within a spreadsheet to create a table for use in coursework reports and dissertates the work of the stages in drawing a graph	51.1	Mutagenicity testing using the Ames test - an example of a widely used bioassay	317
Marking animals to study ecological populations Measuring age in organisms 55.1 How to determine the BOD of a water sample How to determine the BOD of a water sample How to measure the bulk density of a soil or sediment 56.2 How to measure the organic content of soil and sediment samples using the loss on ignition (LOI) techniques 56.3 How to measure the grain size distribution of soils and sediments by dry sieving How to site a weather station and specific meteorological sensors 57.1 How to site a weather station and specific meteorological sensors 58.1 Measuring photon flux density or irradiance using a battery-powered radiometer How to carry out immunodiffusion assays How to perform an ELISA assay 60.1 Methods of determining the amount of protein in an aqueous solution Types of cross and what you can (and cannot) learn from them Example of a Chi² (x²) test 62.1 How to carry out the polymerase chain reaction (PCR) 80.2 Bioinformatics-Internet resources 64.1 How to determine the specific activity of an experimental solution 64.2 Tips for preparing samples for liquid scintillation counting 65.1 How to set up a Clark (Rank) oxygen electrode 66.2 How to convert a chart recorder trace to a rate of O₂ consumption or production 66.3 How to carry out the Winkler method for determination of dissolved oxygen in water 67.1 How to use a low-speed bench centrifuge 88.1 How to use a spectrophotometer 88.2 How to use a flame photometer 19.1 How to carry out agarose gel electrophoresis of DNA 19.2 How to crary out agarose gel electrophoresis of DNA 19.2 How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations 19.3 How graphs can misrepresent and mislead 19.4 How to use a nespectrophotometer 20.4 How to use a misrepresent and mislead 19.4 How to use a misrepresent and mislead 19.5 How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations 19.5 How to use a word processor or a spreadsheet to create a table for u	53.1	The stages involved in preparing and using a calibration curve	327
Measuring age in organisms How to determine suspended sediment concentration How to determine the BOD of a water sample How to measure the bulk density of a soil or sediment How to measure the organic content of soil and sediment samples using the loss on ignition (LOI) techniques to the measure the organic distribution of soils and sediments by dry sieving How to measure the grain size distribution of soils and sediments by dry sieving How to measure the grain size distribution of soils and sediments by dry sieving How to site a weather station and specific meteorological sensors Measuring photon flux density or irradiance using a battery-powered radiometer How to carry out immunodiffusion assays How to perform an ELISA assay Methods of determining the amount of protein in an aqueous solution Types of cross and what you can (and cannot) learn from them Stample of a Chi² (χ²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to use up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O₂ consumption or production How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a spectrophotometer How to use a spectrophotometer How to use a spectrophotometer How to use a flame photometer How to use a namen graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertate those to use a day processor or a spreadsheet to create a table for use in coursework reports and dissertate those to use a spreadsheet to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples	53.2	How to use a spreadsheet (Microsoft Excel) to produce a linear regression plot	329
How to determine suspended sediment concentration How to determine the BOD of a water sample How to measure the bulk density of a soil or sediment How to measure the organic content of soil and sediment samples using the loss on ignition (LOI) techniques the water the organic content of soil and sediments by dry sieving How to site a weather station and specific meteorological sensors Measuring photon flux density or irradiance using a battery-powered radiometer How to carry out immunodiffusion assays How to perform an ELISA assay How to perform an ELISA assay How to orary out immunodiffusion assays Lexample of a Chi² (x²) test Lexample of a Chi² (x²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of 0₂ consumption or production How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a colorimeter How to use a low-speed bench centrifuge How to carry out garose gel electrophoresis of DNA How to carry out garose gel electrophoresis of DNA How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for the stages in drawing a graph How to use a variety of the stages in drawing a graph Checklist for preparing a table Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table Checklist for preparing a table How to care and an elgebraic rules of Table 74.2 Model answer to a typical biological problem Love as preparables where simple arithmetic means are inappropriate How to carry out a t-test Worked example of a t-test	54.1	Marking animals to study ecological populations	338
How to determine the BOD of a water sample How to measure the bulk density of a soil or sediment How to measure the organic content of soil and sediment samples using the loss on ignition (LOI) techniques How to measure the grain size distribution of soils and sediments by dry sieving How to site a weather station and specific meteorological sensors How to site a weather station and specific meteorological sensors How to carry out immunodiffusion assays How to perform an ELISA assay How to perform an ELISA assay Wethods of determining the amount of protein in an aqueous solution Example of a Chi² (x²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to carry out the Winkler method for determination of dissolved oxygen in water How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a colorimeter How to use a colorimeter How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out agarose gel electrophoresis of DNA How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a low-graphs of the stages in drawing a graph How to use a own processor or a spreadsheet to create a table for use in coursework reports and dissertations How do use a dorn preparing a table How to use a very out graphs of the stages in drawing a graph How to use a very out graphs of the stages in drawing a graph How to use a very out agarose gel electrophoresis of DNA How to use a very out graphs of the stages in drawing a graph How to use a very out graphs of the stages in drawing a graph How to use a very out graphs of the stages in drawing a graph How to			341
 How to measure the bulk density of a soil or sediment How to measure the organic content of soil and sediment samples using the loss on ignition (LOI) techniques How to measure the grain size distribution of soils and sediments by dry sieving How to site a weather station and specific meteorological sensors Measuring photon flux density or irradiance using a battery-powered radiometer How to carry out immunodiffusion assays How to perform an ELISA assay Methods of determining the amount of protein in an aqueous solution Types of cross and what you can (and cannot) learn from them Example of a Chi² (χ²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O₂ consumption or production to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a spectrophotometer How to use a spectrophotometer How to carry out agarose gel electrophoresis of DNA How to carry out agarose gel electrophoresis of DNA How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How to use a misrepresent and mislead Checklist for the stages in drawing a graph How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertaring. How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertaring. Loeschist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertari			350
 How to measure the organic content of soil and sediment samples using the loss on ignition (LOI) techniques How to measure the grain size distribution of soils and sediments by dry sieving How to site a weather station and specific meteorological sensors Measuring photon flux density or irradiance using a battery-powered radiometer How to carry out immunodiffusion assays How to perform an ELISA assay How to carry out immunodiffusion assays How to carry out immunodiffusion assays for a Chi* (χ*) test Lexample of a Chi* (χ*) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O₂ consumption or production How to use a low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a spectrophotometer How to use a flame photometer How to use a flame photometer How to use an armanisrepresent and mislead Checklist for the stages in drawing a graph How to use an amaisrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations Loecklist for preparing a table How			352
How to measure the grain size distribution of soils and sediments by dry sieving How to site a weather station and specific meteorological sensors How to carry out immunodiffusion assays How to perform an ELISA assay How to perform an ELISA assay Methods of determining the amount of protein in an aqueous solution Hypes of cross and what you can (and cannot) learn from them Example of a Chi² (x²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics—Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O₂ consumption or production How to use a low-speed bench centrifuge How to use a low-speed bench centrifuge How to use a spectrophotometer How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out agarose gel electrophoresis of DNA How to carry out agarose gel electrophoresis of DNA How to carry out agarose gel electrophoresis of DNA How to carry out agarose garph How to use and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for the stages in drawing a graph How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test How to carry out a t-test		·	357
 How to site a weather station and specific meteorological sensors Measuring photon flux density or irradiance using a battery-powered radiometer How to carry out immunodiffusion assays How to perform an ELISA assay Methods of determining the amount of protein in an aqueous solution Types of cross and what you can (and cannot) learn from them Example of a Chi² (χ²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to set up a Clark (Rank) oxygen electrode How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a flame photometer How to use a flame photometer How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertate Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test Worked example of a t-test 			358
Measuring photon flux density or irradiance using a battery-powered radiometer How to carry out immunodiffusion assays How to perform an ELISA assay Methods of determining the amount of protein in an aqueous solution Types of cross and what you can (and cannot) learn from them Example of a Chi² (χ²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O₂ consumption or production How to use up a Clark with emethod for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to crary out agarose gel electrophoresis of DNA How to crave and amend graphs within a spreadsheet for use in coursework reports and dissertations Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations though the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to use a spreadsheet to calculate descriptive statistics Worked example of a t-test Worked example of a t-test			359
How to carry out immunodiffusion assays How to perform an ELISA assay Methods of determining the amount of protein in an aqueous solution Methods of determining the amount of protein in an aqueous solution Example of a Chi² (x²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O₂ consumption or production How to use an low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a spectrophotometer How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations Checklist for preparing a table There example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to use a spreadsheet of a t-test Worked example of a t-test			365
 How to perform an ELISA assay Methods of determining the amount of protein in an aqueous solution Types of cross and what you can (and cannot) learn from them Example of a Chi² (χ²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O₂ consumption or production How to use a low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertat Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test 			374
 Methods of determining the amount of protein in an aqueous solution Types of cross and what you can (and cannot) learn from them Example of a Chi² (χ²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O₂ consumption or production How to use up a low-speed bench centrifuge How to use a low-speed bench centrifuge How to use a olorimeter How to use a spectrophotometer How to use a flame photometer How to use a flame photometer How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertar Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to us a t-test Worked example of a t-test 		· · · · · · · · · · · · · · · · · · ·	379
 Types of cross and what you can (and cannot) learn from them Example of a Chi² (χ²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O₂ consumption or production How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to carry out a t-test Worked example of a t-test Worked example of a t-test 			383
Example of a Chi² (χ ²) test How to carry out the polymerase chain reaction (PCR) Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O₂ consumption or production How to use a low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out sDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How do use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How do use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How to use a spreadsheet to calculate descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test Worked example of a t-test			388
62.1 How to carry out the polymerase chain reaction (PCR) 62.2 Bioinformatics-Internet resources 64.1 How to determine the specific activity of an experimental solution 64.2 Tips for preparing samples for liquid scintillation counting 65.1 How to set up a Clark (Rank) oxygen electrode 65.2 How to convert a chart recorder trace to a rate of O ₂ consumption or production 65.3 How to carry out the Winkler method for determination of dissolved oxygen in water 66.1 How to use a low-speed bench centrifuge 68.1 How to use a colorimeter 68.2 How to use a spectrophotometer 68.3 How to use a spectrophotometer 68.4 How to use a spectrophotometer 68.6 How to carry out agarose gel electrophoresis of DNA 69.1 How to carry out SDS-PAGE for protein separation 69.2 Checklist for the stages in drawing a graph 69.3 How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations 69.4 How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations 69.5 How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations 69.6 How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations 69.7 How to use a spreadsheet to calculate of table 74.2 69.7 How to use a spreadsheet to calculate descriptive statistics 69.7 How to use a spreadsheet to calculate descriptive statistics 69.7 How to use a spreadsheet to calculate descriptive statistics 69.8 How to use a spreadsheet to calculate descriptive statistics 69.9 How to use a spreadsheet to calculate descriptive statistics 69.9 How to use a spreadsheet to calculate descriptive statistics 69.9 How to use a spreadsheet to calculate descriptive statistics 69.9 How to use a spreadsheet to calculate descriptive statistics 69.9 How to use a spreadsheet to calculate descriptive statistics			397
Bioinformatics-Internet resources How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O ₂ consumption or production How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a spectrophotometer How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertat Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to use a spreadsheet to calculate descriptive statistics How to use a spreadsheet to calculate descriptive statistics Worked example of a t-test			398
How to determine the specific activity of an experimental solution Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O ₂ consumption or production How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a flame photometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How to use a spreadsheet in class of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test Worked example of a t-test			405
Tips for preparing samples for liquid scintillation counting How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O ₂ consumption or production How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a flame photometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertar Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to use a spreadsheet to calculate descriptive statistics How to carry out a <i>t</i> -test Worked example of a <i>t</i> -test			408
How to set up a Clark (Rank) oxygen electrode How to convert a chart recorder trace to a rate of O ₂ consumption or production How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a flame photometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertat Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test Worked example of a t-test		·	419 421
How to convert a chart recorder trace to a rate of O ₂ consumption or production How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations How del answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test Worked example of a t-test			426
 How to carry out the Winkler method for determination of dissolved oxygen in water How to use a low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test Worked example of a t-test 			427
 How to use a low-speed bench centrifuge How to use a colorimeter How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertar Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test Worked example of a t-test 			429
 How to use a colorimeter How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertate Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test Worked example of a t-test 		· · · · · · · · · · · · · · · · · · ·	444
 How to use a spectrophotometer How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test Worked example of a t-test 		·	448
 How to use a flame photometer How to carry out agarose gel electrophoresis of DNA How to carry out SDS-PAGE for protein separation Checklist for the stages in drawing a graph How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertations Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test Worked example of a t-test 			451
 70.1 How to carry out agarose gel electrophoresis of DNA 70.2 How to carry out SDS-PAGE for protein separation 72.1 Checklist for the stages in drawing a graph 72.2 How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations 72.3 How graphs can misrepresent and mislead 73.1 Checklist for preparing a table 73.2 How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertative. 74.1 Example of using the algebraic rules of Table 74.2 74.2 Model answer to a typical biological problem 75.1 Descriptive statistics for an illustrative sample of data 75.2 Three examples where simple arithmetic means are inappropriate 75.3 How to use a spreadsheet to calculate descriptive statistics 76.1 How to carry out a t-test 76.2 Worked example of a t-test 			452
 70.2 How to carry out SDS-PAGE for protein separation 72.1 Checklist for the stages in drawing a graph 72.2 How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations 72.3 How graphs can misrepresent and mislead 73.1 Checklist for preparing a table 73.2 How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertative. 74.1 Example of using the algebraic rules of Table 74.2 74.2 Model answer to a typical biological problem 75.1 Descriptive statistics for an illustrative sample of data 75.2 Three examples where simple arithmetic means are inappropriate 75.3 How to use a spreadsheet to calculate descriptive statistics 76.1 How to carry out a t-test 76.2 Worked example of a t-test 			464
 72.1 Checklist for the stages in drawing a graph 72.2 How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations 72.3 How graphs can misrepresent and mislead 73.1 Checklist for preparing a table 73.2 How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertative 74.1 Example of using the algebraic rules of Table 74.2 74.2 Model answer to a typical biological problem 75.1 Descriptive statistics for an illustrative sample of data 75.2 Three examples where simple arithmetic means are inappropriate 75.3 How to use a spreadsheet to calculate descriptive statistics 76.1 How to carry out a t-test 76.2 Worked example of a t-test 			465
 How to create and amend graphs within a spreadsheet for use in coursework reports and dissertations How graphs can misrepresent and mislead Checklist for preparing a table How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertated. Example of using the algebraic rules of Table 74.2 Model answer to a typical biological problem Descriptive statistics for an illustrative sample of data Three examples where simple arithmetic means are inappropriate How to use a spreadsheet to calculate descriptive statistics How to carry out a t-test Worked example of a t-test 		, , , , , , , , , , , , , , , , , , ,	477
 72.3 How graphs can misrepresent and mislead 73.1 Checklist for preparing a table 73.2 How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertated. 74.1 Example of using the algebraic rules of Table 74.2 74.2 Model answer to a typical biological problem 75.1 Descriptive statistics for an illustrative sample of data 75.2 Three examples where simple arithmetic means are inappropriate 75.3 How to use a spreadsheet to calculate descriptive statistics 76.1 How to carry out a t-test 76.2 Worked example of a t-test 			480
 73.1 Checklist for preparing a table 73.2 How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertar 74.1 Example of using the algebraic rules of Table 74.2 74.2 Model answer to a typical biological problem 75.1 Descriptive statistics for an illustrative sample of data 75.2 Three examples where simple arithmetic means are inappropriate 75.3 How to use a spreadsheet to calculate descriptive statistics 76.1 How to carry out a t-test 76.2 Worked example of a t-test 			485
 73.2 How to use a word processor or a spreadsheet to create a table for use in coursework reports and dissertant to the sample of using the algebraic rules of Table 74.2 74.2 Model answer to a typical biological problem 75.1 Descriptive statistics for an illustrative sample of data 75.2 Three examples where simple arithmetic means are inappropriate 75.3 How to use a spreadsheet to calculate descriptive statistics 76.1 How to carry out a t-test 76.2 Worked example of a t-test 	73.1		489
 74.1 Example of using the algebraic rules of Table 74.2 74.2 Model answer to a typical biological problem 75.1 Descriptive statistics for an illustrative sample of data 75.2 Three examples where simple arithmetic means are inappropriate 75.3 How to use a spreadsheet to calculate descriptive statistics 76.1 How to carry out a t-test 76.2 Worked example of a t-test 			490
 75.1 Descriptive statistics for an illustrative sample of data 75.2 Three examples where simple arithmetic means are inappropriate 75.3 How to use a spreadsheet to calculate descriptive statistics 76.1 How to carry out a t-test 76.2 Worked example of a t-test 	74.1		495
 75.2 Three examples where simple arithmetic means are inappropriate 75.3 How to use a spreadsheet to calculate descriptive statistics 76.1 How to carry out a <i>t</i>-test 76.2 Worked example of a <i>t</i>-test 	74.2	Model answer to a typical biological problem	496
 75.3 How to use a spreadsheet to calculate descriptive statistics 76.1 How to carry out a <i>t</i>-test 76.2 Worked example of a <i>t</i>-test 	75.1	Descriptive statistics for an illustrative sample of data	506
76.1 How to carry out a <i>t</i>-test76.2 Worked example of a <i>t</i>-test	75.2		511
76.2 Worked example of a <i>t</i> -test		How to use a spreadsheet to calculate descriptive statistics	512
	76.1		521
76.3 Using a spreadsheet to calculate hypothesis-testing statistics			522
	76.3	Using a spreadsheet to calculate hypothesis-testing statistics	524

Preface to the sixth edition

The biosciences exist in an environment of current hypotheses rather than certainty, where natural variation occurs and can confuse empirical data. Knowledge of research design and the appropriate use of statistical analysis to enable a valid interpretation of experimental results is required. The biosciences are essentially practical and experimental subjects. Students are required to undertake appropriate practical education throughout their programme, which is progressive in nature and designed to supplement other academic learning.

Draft Subject Benchmark Statement for Biosciences (2015)
Quality Assurance Agency for Higher Education.
Available: http://www.qaa.ac.uk/en/Publications/
Documents/SBS-Biosciences-consultation-15.pdf.
Last accessed 18/07/15.

All knowledge and theory in biology have originated from observation and experiment. As a result, laboratory and field work are important components of undergraduate training, and successful students develop a number of practical skills, ranging from those required to observe, measure and record accurately to those associated with operating up-to-date analytical equipment, alongside broader skills involved in teamwork and effective study. In creating the sixth edition of *Practical Skills in Biology*, we have maintained the approach of the previous editions, with the aim of supporting students (and lecturers) over a wide range of practical topics. As before, this is provided in a concise but user-friendly manner, with key points and definitions, illustrations and worked examples, tips and hints, 'How to' boxes and checklists and 'Safety note' boxes where appropriate.

This new edition consolidates the changes made for the fifth edition, which included additional material covering environmental investigations, chemical analysis, photosynthesis and respiration, stable isotopes and electrophoresis. We have completely revised and updated the text references and sources for further study, and incorporated over 50 new tips, figures, tables and boxes. Throughout the book we have changed the guidance regarding Microsoft *Office* software to apply in a generic sense rather than to any specific version. This may mean that readers may need to adjust commands if these are not appropriate. Guidance on specific commands and their syntax can usually be found using the software's help facility. Boxes giving details of approaches based on *Office 2003* and

Office 2007 that appeared in previous additions will be made available via the book's online resource at www.pearsoned. co.uk/practicalskills. This website continues to host the answers to the study exercises as well as text references and sources for further study – with live web links where applicable.

We should like to take this opportunity to thank our wives and families for their continued support, and to recognise the following colleagues and friends who have provided assistance, comment and food for thought at various points during the production of all six editions: Richard A'Brook, Margaret Adamson, Gail Alexander, Steve Atkins, Janet Aucock, Chris Baldwin, Abdellah Barekate, Gary Black, Geoff Bosson, Olivia Bragg, Sally Brown, Eldridge Buultjens, Richard Campbell, Cathy Caudwell, Bob Cherry, Mirela Cuculescu, John Dean, Charlie Dixon, Jackie Eager, Brian Eddy, Charmain Elder, Neil Fleming, Jennifer Gallacher, Karen Gowlett-Holmes, Alan Grant, Margaret Gruver, Mhairi Haggerty, Bryan Harrison, Rod Herbert, Dave Holmes, Helen Hooper, David Hopkins, Steve Hubbard, Jane Illés, Hugh Ingram, Wendy James, Andy Johnston, Alan Jones, Lorraine Kay, Ian Kill, Rhonda Knox, Lisa Lee-Jones, Phil Manning, Pete Maskrey, Fiona McKie-Bell, Steve Millam, Kirsty Millar, Stephen Moore, Rachel Morris, Fiona O'Donnell, Roy Oliver, Neil Paterson, John Raven, Steve Reed, Pete Rowell, David Sillars, J. Andrew C. Smith, Philip Smith, Susan Smith, Peter Sprent, Rob Sunley, Bill Tomlinson, Ruth Valentine, Lorraine Walsh, Dave Wealleans, Will Whitfield, Ian Winship, Bob Young and Hilary-Kay Young.

A special word of thanks is extended to Kathleen McMillan, whose work with one of us (JW) on Pearson Education's *Smarter Student* series has influenced much of our writing in the first three sections of this book. We should also like to thank the staff of Pearson Education for their friendly support over the years, and would wish to acknowledge Pat Bond, Rufus Curnow, Pauline Gillett, Owen Knight, Simon Lake, Dawn Phillips, Alex Seabrook and Richelle Zakrzewski for their encouragement and commitment to the *Practical Skills* series. Our thanks are also extended to Louise Attwood, Lisa Blackwell, Gary Hall and Mary Lince for their excellent work at the editing and proofreading stages. As with the previous editions, we should be grateful to hear of any errors you might notice, so that these can be put right at the earliest opportunity.

ALLAN JONES (allan.jones9@btinternet.com)
ROB REED (r.reed@cqu.edu.au)
JONATHAN WEYERS (j.d.b.weyers@dundee.ac.uk)

For the student

This book aims to provide guidance and support over the broad range of your undergraduate course, including laboratory classes, project work, lectures, tutorials, seminars and examinations, as outlined below.

Chapters 1-8 cover general skills

These include a number of transferable skills that you will develop during your course: for example, self-evaluation; time management; teamwork; preparing for examinations; creating a CV. They also provide guidance on how to study effectively and how to approach examinations and assessments.

Chapters 9-19 deal with IT, learning resources and communicating information

These chapters will help you get the most out of the resources and information available in your library, and on the Web, as well as providing helpful guidance on the use of software packages for data analysis, preparing assignments, essays and laboratory reports, etc. The ability to evaluate information is an increasingly important skill in contemporary society, and practical advice is provided here.

Chapters 20-70 cover a wide range of specific practical skills required in biology

These are based on the authors' experience of the questions students often ask in practical classes, and the support that is needed in order to get the most out of particular exercises. The text includes tips, hints, definitions, worked examples and 'How to' boxes that set out the key procedures in a step-by-step manner, with appropriate comments on safe working practice. The material ranges from basic laboratory procedures, such as preparing solutions, through specimen collection, identification and manipulation to the more advanced practical procedures that you might use during a final year project, e.g. radioisotope work.

Chapters 71-76 explain data analysis and presentation

This will be an important component of your course and you will find that these chapters guide you through the skills and techniques required, ranging from the presentation of results as graphs or tables through to the application of statistical tests. Worked examples are used to reinforce the numerical aspects wherever possible.

Study exercises and problems

We added these as a new feature in the third edition, following comments from students and staff at UK universities, who felt that it would provide a useful opportunity to practise some of the skills covered in the book and a check on the understanding of the material. We hope that the exercises will continue be useful both to learners and to their tutors.

Most of the problems assume students are working on their own, using the information supplied; however, tutors might wish to provide alternative starting material (e.g. a set of data from a practical class). We have also assumed that students will have access to a scientific calculator and, sometimes, to a networked PC with typical 'office' programs (especially word processor and spreadsheet), plus Internet access via a modem and browser. Where a library is mentioned, this is assumed to include access to standard reference works and a selection of scientific journals.

We recommend that students work together for some exercises – this is a valuable means of learning and, where there is no single correct answer to a problem, teamwork provides a mechanism for checking and discussing different approaches.

Answers are provided on the book's website at www. pearsoned.co.uk/practicalskills. For numerical problems, the working out is shown with the final answer, while for non-numerical exercises, we provide 'answers' in the form of tips, general guidance or illustrative examples, etc.

We hope that you will find this book a helpful guide throughout your course, and beyond.

Acknowledgements

We are grateful to the following for permission to reproduce copyright material:

Figures

Figure 40.2 adapted from New Flora of the British Isles, 2nd edn, Cambridge University Press (Stace, C.A. 1997) Cambridge University Press, Cambridge; Figure 54.1 from www.ukgbc.org/ site/document/download/?document_id=556, http://jncc.defra. gov.uk/, Joint Nature Conservation Committee; Figure 56.2 from Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd edn, ftp://ftp-fc.sc.egov.usda.gov/ NSSC/Soil_Taxonomy/tax.pdf, US Government Printing Office, Washington. USA; Figure 58.1 from Methods for Physical and Chemical Analysis of Fresh Waters, 2nd edn, Blackwell Scientific (Golterman, H.L., Clymo, R.S. and Ohnstad, M.A.M. 1978) No 8, Wiley-Blackwell; Figure 58.3 adapted from Methods for Physical and Chemical Analysis of Fresh Waters, 1st edn, Blackwell Scientific, Oxford (Golterman, H.L., Clymo, R.S. and Ohnstad, M.A.M. 1978) Wiley-Blackwell; Figure 66.2 from http://ppsystems.com/ co2-gas-analyzers/, www.ppsystems.com, PP Systems; Figure 67.1 from http://www.fisher.co.uk/index.php/en/component/ searchenhanced/, www.fisher.co.uk, Fisher Scientific UK Ltd, Thermo Fisher Scientific.

Maps

Figure 54.2 from NERC 100017897, http://data.nbn.org.uk, National Biodiversity Network, Crown Copyright. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Screenshots

Screenshot 42.4 from http://www.whitman.edu/content/virtualpig, Whitman College

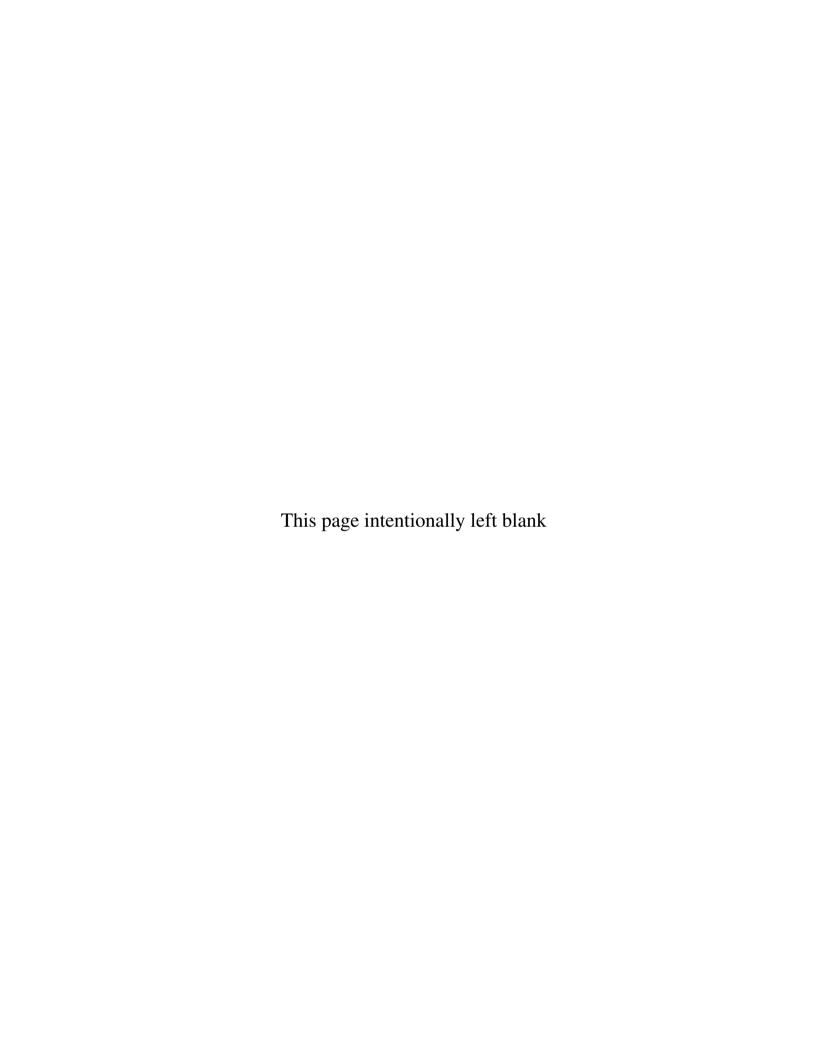
Tables

Table 54.1 after *National Vegetation Classification: Users' Handbook*, Joint Nature Conservation Committee (Rodwell, J.C. 2006) Joint Nature Conservation Committee; Tables 54.3 and 54.4 from Age specific survivorship and reproduction in *Phlox drummondii, The American Naturalist*, 113, pp. 881–903 (Leverlich, W.J. and Levin, D.A. 1979), University of Chicago Press; Table 58.2 from *The Biology of Seaweeds*, University of California Press (Luning, K.J. Editors: C.S. Lobban and .J. Wynne 1981) pp. 326–55, University of California Press; Table 58.2 from *The Biology of Seaweeds* by Lobban, Christopher S.; Wynne, Michael J. Reproduced with permission of Blackwell Scientific via Copyright Clearance Center.

Text

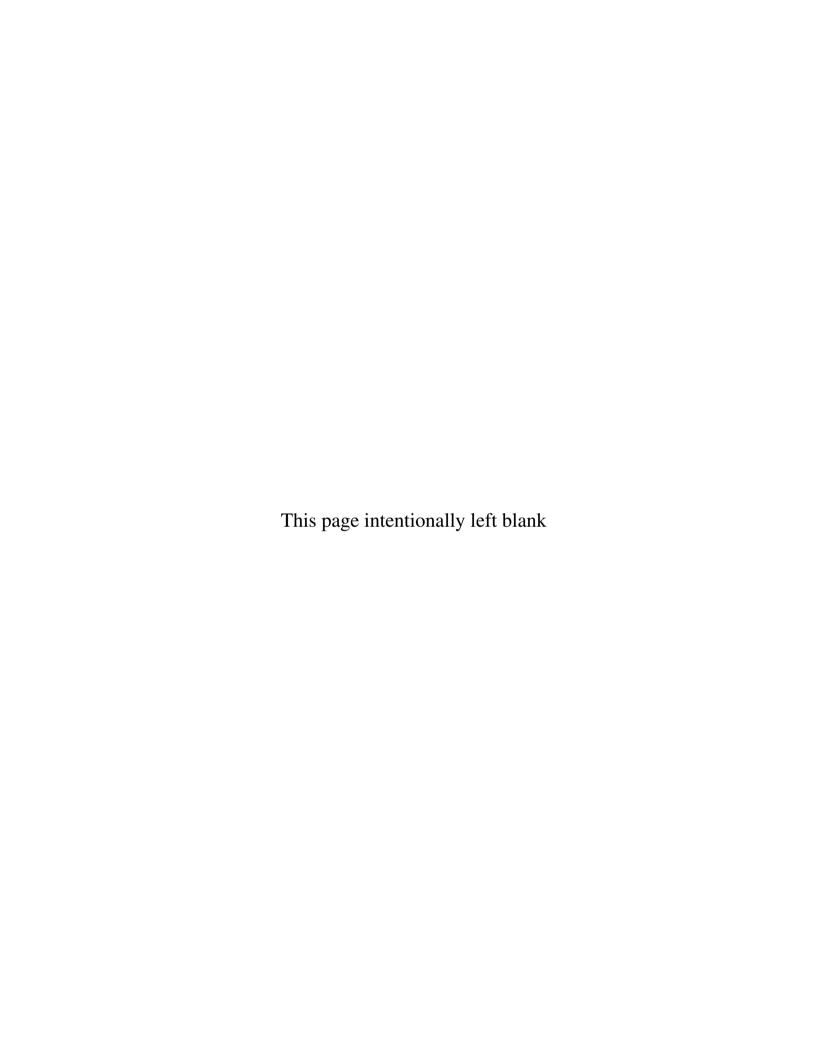
Box 5.1 adapted from A Guide to Learning Preferences, vark-learn.com, Version 7.1 (2011) held by Neil D. Fleming, Christchurch, New Zealand.

Photographs


(Key: b-bottom; c-centre; l-left; r-right; t-top)

123RF.com: petervick167 355; American Physiological Society: 420; David Bryson/Clandonia Resources: 346; Allan Jones: 240; KNAUER, Germany. www.knauer.net: 161; Supplied by Microscopy an operating division of KeyMed (Medical & industrial Equipment) Ltd: 272, 275; with permission Oregon Scientific Global Distribution Ltd. www.oregonscientific.com: 365l, 365r; 365l, 365r; Courtesy of PP Systems, Amesbury, MA, USA (http://www.ppsystems.com): 432; Property of bioMerieux S.A.: 251; Rob Reed: 284, 294; Skye Instruments Ltd: 373; Courtesy of Heinz Walz GmbH, Effeltrich, Germany (http://www.walz.com): 434; Jonathan Weyers: 262, 267, 272b, 274, 277, 311.

List of abbreviations


A jestorbance Acpt Advisory Committee on Dangerous Pathogens ACP				N [0
ACPP Advisory Committee on Dangerous Pathogens APP adenosine diphosphate HPP adenosine diphosphate delicity or organic adenosine diphosphate delicity or organic adenosine diphosphate (reduced form) incidinante adenine dinucleotide phosphate (reduced form) incidinante delicity organic applied month organic app	A	absorbance	HEPES	N-[2-hydroxyethyl]piperazine-
ANOVA ANOVA ANOVA ANOVA Analysis of variance ATP adenosine triphosphate ASA American Standards Association BDD biological (or biochemical) oxygen demand BSA bovine serum albumin CDC compact disc CE capillary electrophoresis CFU colony-forming unit CGE capillary gel electrophoresis CIEF capillary soelectric focusing immunoglobulin immu				
ANOVA Analysis of variance ATP adenosine triphosphate ASA American Standards Association BOD biological (or biochemical) oxygen demand BSA bovine serum albumin CC compact disc CE capillary electrophoresis CFU colony-forming unit CGE capillary gel electrophoresis CIFC capillary gel electrophoresis CIFC capillary gel electrophoresis CIFC capillary specific focusing COB chemical oxygen demand COSHH COSHH COV coefficient of variance CZE capillary sone electrophoresis CDFU control of Substances Hazardous to Health COV coefficient of variance CZE capillary zone electrophoresis CDFU capillary sone electrop		,		
ASA American Standards Association BOD biological (or biochemical) oxygen demand BSA bovine serum albumi BSA infrared gas analyser BSA infra				
ASA American Standards Association biological (or biochemical) oxygen demand bovine serum albumin IPTG isothiopropylgalactoside infrared (radiation) infrared (radiation) infrared (radiation) infrared (radiation) infrared gas analyser infrared gas analyser infrared gas analyser cell colony-forming unit IRMA immunoradiometric assay infrared gas analyser infrared grain assay sectrometry in the properties of the properties in the properties infrared gas analyser i			IAPSO	International Association for Physical Sciences of
BSD biological (or biochemical) oxygen demand Ig immunoglobulin octoropylgalactoside BSA bovine serum albumin IPTG isothiopropylgalactoside CD compact disc IR infrared (radiation) CE capillary electrophoresis IRM immunoralometric assay CGE capillary gel electrophoresis IRMS isotope ratio mass spectrometry CIEF capillary isoelectric focusing IRMS isotope ratio mass spectrometry COD chemical oxygen demand Km Michaelis constant COSHH Control of Substances Hazardous to Health Kw ionisation constant of water CV coefficient of avriance LAN local area network CZE capillary zone electrophoresis LM light microscopy DCMU 3-(3'4'-dichlorphenol)-1,1-dimethylurea LDI loss on ignition DCPIP 26'-di-dichlorphenol-1-indophenol LSD least significant difference DEFT direct epifluorescence technique M molar (mol 1'') df. degrees of freedom MECC molar (mol 1'')				
BSA bovine serum albumin IPTG isothiopropylgalactoside CD compact disc IR infrared (radiation) CE capillary electrophoresis IRGA infrared gas analyser CFU colony-forming unit IRMA immunoradiometric assay CGE capillary gel electrophoresis IRMS isotope ratio mass spectrometry CIEF capillary sisoelectric focusing ISO International Organization for Standardization COSHH Control of Substances Hazardous to Health COV coefficient of variance LAN local area network COSHH Control of Substances Hazardous to Health COV coefficient of variance LAN local area network CZE capillary zone electrophoresis LM light microscopy DCMU 3-{3',4'-dichlorphenyl}-1,1-dimethylurea LOI loss on ignition DCPIP 2,6-dichlorophenol-indophenol LSD least significant difference DEFT direct epifluorescence technique M molar (mol F') d.f. degrees of freedom MCQ multiple-choice question DIN Deutsches Institut fur Normung MECC micelar electrochientic capillary chromatography DNO 5,5-dimethyl-2,4-oxazolidinedione MEL DNA deoxyribonucleic acid MMR massles-mumps-rubella DNP dinitrophenol MPN most probable number DNA disolved oxygen MRI magnetic resonance imaging d.p.m. disintegrations per minute DTT dithiothreitol MS mass spectrometry EC electron capture NAD* nicotinamide adenine dinucleotide (oxidised form) TEDTA ethylenediaminetetraacetic acid NADP* nicotinamide adenine dinucleotide phosphate ELISA enzyme-linked immunosorbent assay ELISA enzyme-linked immunosorbent assay ELISA enzyme-linked immunosorbent assay ELISA enzyme-linked immunosorbent assay EMR electron spir resonance NPQ non-photochemical quenching F F araday constant NTU national turbidity unit nicotinamide adenine dinucleotide phosphate (oxidised form) F Faraday constant NTU national turbidity unit national			IEF	
CE capillary electrophoresis CFU colony-forming unit CGE capillary gel electrophoresis CFU colony-forming unit CGE capillary gel electrophoresis CIEF capillary gel electrophoresis CIEF capillary gel electrophoresis CIEF capillary sole electrophoresis COSHH Control of Substances Hazardous to Health COSHH Control of Substances Hazardous to Health COV coefficient of variance CIZE capillary zone electrophoresis CIZE capillary zone electrophoresis CMU 3-(3'-4'-clkio-lorphenyl)-1,1-dimethylurea CIZE dapillary zone electrophoresis CMI light microscopy CIZE dapillary zone electrophoresis CMI light microscopy CIZE dapillary zone electrophoresis CIMI light microscopy CIZE dapillary zone electrophoresis CIMI light microscopy CIZE dapillary zone electrophoresis CIMI light microscopy CIZE dapillary zone electrophoresis CIZE dapillary zone electron incortamide adenine dinucleotide (reduced form) CIZE dapillary zone electrophoresis CI	BOD	biological (or biochemical) oxygen demand	lg	immunoglobulin
CFU colony-forming unit CGE capillary gel electrophoresis CFU colony-forming unit CGE capillary soelectric focusing COD chemical oxygen demand COSHH CONTROL Oxygen demand COSHH CONTROL Oxygen demand COSHH CONTROL Oxygen demand COSHH COW coefficient of variance CTE capillary ose electrophoresis CTE	BSA	bovine serum albumin	IPTG	isothiopropylgalactoside
CGE capillary gel electrophoresis IRMS isotope ratio mass spectrometry CGF capillary isoelectric focusing ISO International Organization for Standardization COD chemical oxygen demand COSHH Control of Substances Hazardous to Health COV coefficient of variance CZE capillary zone electrophoresis LAN local area network CZE capillary zone electrophoresis LAN local area network CZE capillary zone electrophoresis LAN local area network CZE capillary zone electrophoresis LM light microscopy CAS direct epifluorescence technique DCMU 3-(3',4'-dichlorphenyl)-1,1-dimethylurea DCPIP 2,6-dichlorophenol-indophenol LSD least significant difference direct epifluorescence technique MCQ molar (mol 1') df. degrees of freedom MCQ mittple-choice question DIN Deutsches Institut fur Normung MCQ mittple-choice question MMR maximum exposure limits DNA deoxyribonucleic acid DNP dinitrophenol MPN most probable number DO dissolved oxygen MRI magnetic resonance imaging disintegrations per minute My mass spectrometry EC electron capture DDTA ethylenediaminetetraacetic acid NADH nicotinamide adenine dinucleotide (oxidised form) nicotinamide adenine dinucleotide (reduced form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine dinucleotide phosphate (reduced	CD	compact disc	IR	infrared (radiation)
GGE capillary gel electrophoresis IRMS isotope ratio mass spectrometry CIEF capillary isoelectric focusing ISO International Organization for Standardization COD chemical oxygen demand Km Michaelis constant COSHH Control of Substances Hazardous to Health Kw ionisation constant of water COV coefficient of variance LAN local area network CZE capillary zone electrophoresis LM light microscopy DCMU 3-{3',4'-dichlorphenol-indophenol LSD least significant difference DEFT direct epifluorescence technique M molar (mol I*) d.f. degrees of freedom MCQ multiple-choice question DIN Deutsches Institut fur Normung MECC micellar electrokinetic capillary chromatography DNA deoxyribonucleic acid MMR maximum exposure limits DNA deoxyribonucleic acid MMR maximum exposure limits DNA deoxyribonucleic acid MMR mass probable number DO disintegrations per minute M,	CE	capillary electrophoresis	IRGA	infrared gas analyser
CIEF capillary isoelectric focusing COD chemical oxygen demand Km Michaelis constant COSHH Cotrol of Substances Hazardous to Health COV coefficient of variance LAN local area network capillary zone electrophoresis LM light microscopy COSHH International Organization for Standardization Michaelis constant of water coefficient of variance LAN local area network light microscopy COSHH International Organization for Standardization Michaelis constant of water coefficient of variance LAN local area network local area network capillary zone electrophoresis LM light microscopy COSHH International Organization for Standardization for part of water coefficient or Standardization constant of water coefficient or Standardization for Standardization for Standardization for Standardization for Standardization for Michaelis constant for water capillary constant for water capillary chromatography molar (mol 1-1) close or significant difference michaelis significant di	CFU	colony-forming unit	IRMA	immunoradiometric assay
COSHH Control of Substances Hazardous to Health (SW ionisation constant of water (COV coefficient of variance (LAN local area network (COV coefficient of variance (LAN local area network (COV coefficient of variance (LAN local area network (COV capillary zone electrophoresis (LM light microscopy (SC) decidenophenol-indophenol (LSD least significant difference (LSD least signifi	CGE	capillary gel electrophoresis	IRMS	isotope ratio mass spectrometry
COSHH Control of Substances Hazardous to Health (NW ionisation constant of water (COV coefficient of variance LAN local area network (COV coefficient of variance LAN local area network (COV coefficient of variance LAN local area network (COV capillary zone electrophoresis LM light microscopy (Society)-1,1-dimethylurea LOI loss on ignition (DSP) (Society)-1,1-dimethylurea LOI loss on ignition (DSP)-1,1-dimethylurea LOI loss on ignition (DSP)-1,1-dimethylurea LOI loss on ignition (DSPS)-1,1-dimethylurea LOI loss on ignition (DSPS)-1,1-dimethylurea LOI loss on ignition (DSPS) (BSST)-1,1-dimethylurea LOI loss on ignition (DSPS on ignition (DSPS)-1,1-dimethylurea LOI loss on ignition (DSPS on ignition (DSPS)-1	CIEF	capillary isoelectric focusing	ISO	International Organization for Standardization
COSHH Control of Substances Hazardous to Health Kw ionisation constant of water COV coefficient of variance LAN local area network CZE capillary zone electrophoresis LM light microscopy DCMU 3-{3'.4'-dichlorphenyl}-1,1-dimethylurea LOI loss on ignition DEFT direct epifluorescence technique M molar (mol 1") d.f. degrees of freedom MCQ multiple-choice question DIN Deutsches Institut fur Normung MECC micellar electrokinetic capillary chromatography DNA deoxyribonucleic acid MMR maximum exposure limits DNA deoxyribonucleic acid MMR mass prosure limits DNA deoxyribonucleic acid MMR mass prosure limits DNA deoxyribonucleic acid MMR mass prosure limits DNA deintrophenol MPN most probable number DO dissolved oxygen MRI magnetic resonance imaging d.p.m. distitutionherition MS mass spectrometry EC	COD		Km	
COV coefficient of variance CZE capillary zone electrophoresis DCMU 3-(3-4'-dichlorphenyl)-1,1-dimethylurea DCPIP 2,6-dichlorphenol-indophenol DEFT direct epifluorescence technique M molar (mol l-1) degrees of freedom MECC micellar electrokinetic capillary chromatography DMO 5,5-dimethyl-2,4-oxazolidinedione DNA deoxyribonucleic acid DNP dinitrophenol MPN most probable number DO dissolved oxygen MRI magnetic resonance imaging dishibitinitello MSP mass spectrometry DT dithiothreitol MSP nicotinamide adenine dinucleotide (oxidised form) ELTA ethylenediaminetetraacetic acid ELSA enzyme immunoassay ELISA enzyme immunoassay ELISA enzyme immunoassay ELISA enzyme immunoassay EMR electromagnetic radiation ESR electronspin resonance FF Faraday constant FFA formalin acetic acid GC gas chromatography HCG human chorionic gonadotrophin FCR polymerase chain reaction	COSHH		Kw	ionisation constant of water
CZE capillary zone electrophoresis LM light microscopy DCMU 3-(3'4'-dichlorphenyl)-1,1-dimethylurea LOI loss on ignition DCPIP 2,6-dichlorophenol-indophenol LSD least significant difference DEFT direct epifluorescence technique M molar (mol 1") d.f. degrees of freedom MCQ multiple-choice question DIN Deutsches Institut fur Normung MECC micellar electrokinetic capillary chromatography DMO 5,5-dimethyl-2,4-oxazolidinedione MEL maximum exposure limits DNA deoxyribonucleic acid MMR measles-mumps-rubella DNP dinitrophenol MPN most probable number DO dissolved oxygen MRI magnetic resonance imaging d.p.m. disintegrations per minute M, relative molecular mass DTT dithiothreitol MS mass spectrometry EC electron capture NAD+ nicotinamide adenine dinucleotide (oxidised form) EI electron impact ionisation NAD+ nicotinamide adenine dinucleotide (reduced form) EI electron mignact ionisation NADP+ (oxidised form) nicotinamide adenine dinucleotide phosphate (oxidised form) expyme-linked immunosorbent assay NADPH nicotinamide adenine dinucleotide phosphate (reduced form) EMM electron microscopy (reduced form) EMM electron microscopy (reduced form) EMM electron pin resonance NPQ non-photochemical quenching nuclear magnetic radiation NMR nuclear magnetic resonance ESR electron spin resonance NPQ non-photochemical quenching national turbidity unit organic carbon optical density GA graduate attributes OM organic matter GG ass chromatography PAGE GC gas chromatography PAGE GG gas chromatography PAGE GG gas chromatography PAGE GP green fluorescent protein PAM pulse-amplified modulated GMO genetically modified organism PAR photosynthetically active radiation FCR polymerase chain reaction	CoV		LAN	local area network
DCMU 3-(3',4'-dichlorphenyl)-1,1-dimethylurea DCPIP 2,6-dichlorophenol-indophenol LSD least significant difference DEFT direct epifluorescence technique M molar (mol l-1) degrees of freedom MCQ multiple-choice question multiple-choice question MECC micellar electrokinetic capillary chromatography MECC micellar electrokinetic capillary chromatography MECC maximum exposure limits micelural maximum exposure limits micelural maximum exposure didicule (oxidised form) nicotinamide adenine dinucleotide (oxidised form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine dinucleotide phosphate (electron microscopy (oxidised form) nicotinamide adenine dinucleotide phosphate (reduced form) nicotinamide adenine dinucleotide phosphate (reduced form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine dinucleotide phosphate (reduced form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine di	CZE		LM	light microscopy
DCPIP DEFT 2,6-dichlorophenol-indophenol LSD least significant difference molar (mol I¹¹) DEFT direct epifluorescence technique M molar (mol I¹¹) d.f. degrees of freedom MCQ multiple-choice question DIN Deutsches Institut fur Normung MEC micellar electrokinetic capillary chromatography DMO 5,5-dimethyl-2,4-oxazolidinedione MEL maximum exposure limits DNA deoxyribonucleic acid MMR measles-mumps-rubella DNP dinitrophenol MPN most probable number DO dissolved oxygen MRI magnetic resonance imaging d.p.m. disintegrations per minute M, relative molecular mass DTT disintegrations per minute M, relative molecular mass DTT disintegrations per minute M, mass spectrometry EC electron capture NAD nicotinamide adenine dinucleotide (oxidised form) EDTA ethylenediaminetetraacetic acid NADH nicotinamide adenine dinucleotide (preduced form) EIJSA enzyme-linked immunosorbent assay	DCMU			
DEFT direct epifluorescence technique d.f. degrees of freedom MCQ multiple-choice question				
d.f.degrees of freedomMCQmultiple-choice questionDINDeutsches Institut fur NormungMECCmicellar electrokinetic capillary chromatographyDMO5,5-dimethyl-2,4-oxazolidinedioneMELmaximum exposure limitsDNAdeoxyribonucleic acidMMRmeasles-mumps-rubellaDNPdinitrophenolMPNmost probable numberDOdissolved oxygenMRImagnetic resonance imagingd.p.m.disintegrations per minuteM,relative molecular massDTTdithiothreitolMSmass spectrometryECelectron captureNADHnicotinamide adenine dinucleotide (oxidised form)EDTAethylenediaminetetraacetic acidNADHnicotinamide adenine dinucleotide (reduced form)EIelectron impact ionisationNADP*nicotinamide adenine dinucleotide phosphateEIAenzyme-linked immunosorbent assay(oxidised form)EMelectron microscopy(reduced form)EMIextended matching itemsNHnull hypothesisEMRelectron spin resonanceNPQnon-photochemical quenchingFFaraday constantNTUnational turbidity unitFAAformalin acetic acidOCorganic carbonFTPfile transfer protocolODoptical densityGgas chromatographyPAGEpolyacrylamide gel electrophoresisGFPgreen fluorescent proteinPAMpulse-amplified modulatedGMOgenetically modified organismPARphotosy				
DIN Deutsches Institut fur Normung DMO 5,5-dimethyl-2,4-oxazolidinedione DNA deoxyribonucleic acid DNP dinitrophenol DNA dissolved oxygen dinitrophenol DO dissolved oxygen dithiothreitol EC electron capture DTA ethylenediaminetetraacetic acid EIA enzyme immunoassay ELISA enzyme-linked immunosorbent assay EMI evented matching items EMR electron microscopy EMI extended matching items EMR electron spin resonance FF Faraday constant FAA formalin acetic acid FTP file transfer protocol gas acceleration due to gravity GGA graduate attributes GGC gas chromatography EMC denyme of more acceleration sperm functioned or ganitre GPS global positioning system HCG human chorionic gonadotrophin MEL maximum exposure limits maximum e				· · · ·
DMO 5,5-dimethyl-2,4-oxazolidinedione DNA deoxyribonucleic acid MMR measles-mumps-rubella maximum exposure limits measles-mumps-rubella measles-mumps-rubella maximum exposure limits measles-mumps-rubella measles-mumps-rubella more probable number most probable number most probable number most probable number maximum exposure limits measles-mumps-rubella maximum exposure limits measles-mumps-rubella measles-mumps-rubella maximum exposure limits measles-mumps-rubella measles-mumps-rubella maximum exposure limits measles-mumps-rubella mass probable number most probable number mass pretire mass probable number most probable denine dinucleotide (oxidised form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine dinucleotid				
DNA deoxyribonucleic acid DNP dinitrophenol DO dissolved oxygen MRI magnetic resonance imaging d.p.m. disintegrations per minute MFN mass spectrometry dithiothreitol MS mass spectrometry EC electron capture EDTA ethylenediaminetetraacetic acid EI electron impact ionisation EIA enzyme immunoassay ELISA enzyme-linked immunosorbent assay EMI extended matching items EMR electron apin resonance ESR electron spin resonance ESR electron spin resonance MPP null hypothesis EMR electromagnetic radiation NMR nuclear magnetic resonance ESR electron spin resonance NPQ non-photochemical quenching F Faraday constant NTU national turbidity unit FAA formalin acetic acid OC organic carbon FTP file transfer protocol GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin PCR molecular mass most probable number onsorance nost probable number of relative most probable number of polymerase chain reaction				
DNP dissolved oxygen d.p.m. disintegrations per minute DT dithiothreitol EC electron capture EDTA ethylenediaminetetraacetic acid EI electron impact ionisation ELISA enzyme-linked immunosorbent assay EMR electron microscopy EMI extended matching items EMR electron spin resonance ESR electron spin resonance ESR electron spin resonance ESR electron spin resonance EFF Faraday constant FAA formalin acetic acid FTP file transfer protocol GA graduate attributes GC gas chromatography GFF green fluorescent protein GMO genetically modified organism GGFS global positioning system HCG human chorionic gonadotrophin MRI magnetic resonance imaging MRI magnetic resonance imaging MRI magnetic resonance imaging MRI magnetic resonance inaging MADH nicotinamide adenine dinucleotide (poxidised form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamica adenine dinucleotide phosphate				
dissolved oxygen disintegrations per minute disintegrations per minute Mr relative molecular mass mass spectrometry disintegrations per minute Mr relative molecular mass mass spectrometry nicotinamide adenine dinucleotide (oxidised form) nicotinamide adenine dinucleotide (reduced form) electron impact ionisation nicotinamide adenine dinucleotide (reduced form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine dinucleotide phosphate (reduced form) null hypothesis nuclear magnetic radiation null hypothesis nuclear magnetic resonance NPQ non-photochemical quenching Faraday constant NTU national turbidity unit notical density g acceleration due to gravity OES occupational exposure standards organic carbon OD optical density graduate attributes OM organic matter GC gas chromatography PAGE polyacrylamide gel electrophoresis green fluorescent protein PAM pulse-amplified modulated GMO genetically modified organism PAR photosynthetically active radiation GPS global positioning system PBL problem-based learning PCR				
disintegrations per minute DTT dithiothreitol EC electron capture EDTA ethylenediaminetetraacetic acid EI electron impact ionisation EIA enzyme immunoassay ELISA enzyme-linked immunosorbent assay EMM electron microscopy EMI extended matching items EMR electronagnetic radiation ESR electron spin resonance ESR electron spin resonance ESR formalin acetic acid EFP file transfer protocol GA graduate attributes GC gas chromatory GMO genetically modified organism GMO genetically modified organism GGPS global positioning system HCG human chorionic gonadotrophin MS mass spectrometry mass spectrometry nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamica denine dinucleotide phosphate (oxidised form) nicotinamica denine dinucleotide phosphate (oxidised form) nicotina				
dithiothreitol EC electron capture EDTA ethylenediaminetetraacetic acid EI electron impact ionisation EIA enzyme immunoassay ELISA enzyme-linked immunosorbent assay EMR electron microscopy EMI extended matching items EMR electron spin resonance ESR electron spin resonance F Faraday constant FAA formalin acetic acid FTP file transfer protocol GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin MS mass spectrometry nicotinamide adenine dinucleotide (reduced form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine dinucleotide phosphate (reduced form) nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine dinucleotide (oxidised form) nicotinamide adenine dinucleo				
EC electron capture ethylenediaminetetraacetic acid electron impact ionisation electron microscay electron microscopy elect				
EDTA ethylenediaminetetraacetic acid El electron impact ionisation ElA enzyme immunoassay ELISA enzyme-linked immunosorbent assay EM electron microscopy EMI extended matching items EMR electron spin resonance ESR electron spin resonance F Faraday constant FAA formalin acetic acid FTP file transfer protocol GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin NADP+ nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamicle taenine dinucleotide phosphate (oxidised form) nicotinamicle adenine dinucleotide phosphate (oxidised form) nicotinamica adenine dinucleotide phosphate (oxidised form) nicotinamica adenine dinucleotide phosphate (oxidised form) nicotinamica denine dinucleotide phosphate (reduced form) nicotinamica denine dinucleotide (reduced form) nicotinamica denine dinucleotide (reduc				
EI electron impact ionisation EIA enzyme immunoassay ELISA enzyme-linked immunosorbent assay EM electron microscopy EMI extended matching items EMR electron agnetic radiation ESR electron spin resonance F Faraday constant FAA formalin acetic acid FTP file transfer protocol GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin NADP+ nicotinamide adenine dinucleotide phosphate (oxidised form) nicotinamide adenine dinucleotide phosphate (reduced form) nuclear magnetic resonance				
ELISA enzyme immunoassay ELISA enzyme-linked immunosorbent assay EM electron microscopy EMI extended matching items EMR electromagnetic radiation ESR electron spin resonance F Faraday constant FAA formalin acetic acid FTP file transfer protocol GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin NADPH nicotinamide adenine dinucleotide phosphate (reduced form) NH null hypothesis NHR nuclear magnetic resonance NPQ non-photochemical quenching NTU national turbidity unit OC organic carbon OD optical density OES occupational exposure standards OM organic matter PAM pulse-amplified modulated PAR photosynthetically active radiation PAR polymerase chain reaction				
ELISA enzyme-linked immunosorbent assay EM electron microscopy EMI extended matching items EMR electromagnetic radiation ESR electron spin resonance F Faraday constant FAA formalin acetic acid FTP file transfer protocol GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin NH null hypothesis NHR nuclear magnetic resonance NPQ non-photochemical quenching NTU national turbidity unit OC organic carbon OD optical density OES occupational exposure standards OM organic matter polyacrylamide gel electrophoresis photosynthetically active radiation photosynthetically active radiation polymerase chain reaction			NADE	
eMI extended matching items EMR electromagnetic radiation ESR electron spin resonance F Faraday constant FAA formalin acetic acid FTP file transfer protocol GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin NH null hypothesis NH nuclear magnetic resonance NPQ non-photochemical quenching national turbidity unit occorganic carbon organic carbon optical density occupational exposure standards occupational exposure standards organic matter polyacrylamide gel electrophoresis photosynthetically active radiation polymerase chain reaction			NADDU	
EMIextended matching itemsNHnull hypothesisEMRelectromagnetic radiationNMRnuclear magnetic resonanceESRelectron spin resonanceNPQnon-photochemical quenchingFFaraday constantNTUnational turbidity unitFAAformalin acetic acidOCorganic carbonFTPfile transfer protocolODoptical densitygacceleration due to gravityOESoccupational exposure standardsGAgraduate attributesOMorganic matterGCgas chromatographyPAGEpolyacrylamide gel electrophoresisGFPgreen fluorescent proteinPAMpulse-amplified modulatedGMOgenetically modified organismPARphotosynthetically active radiationGPSglobal positioning systemPBLproblem-based learningHCGhuman chorionic gonadotrophinPCRpolymerase chain reaction			NADEL	
EMR electromagnetic radiation NMR nuclear magnetic resonance ESR electron spin resonance NPQ non-photochemical quenching F Faraday constant NTU national turbidity unit FAA formalin acetic acid OC organic carbon FTP file transfer protocol OD optical density g acceleration due to gravity OES occupational exposure standards GA graduate attributes OM organic matter GC gas chromatography PAGE polyacrylamide gel electrophoresis GFP green fluorescent protein PAM pulse-amplified modulated GMO genetically modified organism PAR photosynthetically active radiation GPS global positioning system PBL problem-based learning HCG human chorionic gonadotrophin PCR polymerase chain reaction		·	KILL	· ·
ESR electron spin resonance F Faraday constant FAA formalin acetic acid FTP file transfer protocol GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin NTU national turbidity unit national turbidity national turbid				
Faraday constant FAA formalin acetic acid FTP file transfer protocol GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin NTU national turbidity unit OC organic carbon OD optical density OES occupational exposure standards OM organic matter PAGE polyacrylamide gel electrophoresis PAM pulse-amplified modulated photosynthetically active radiation PBL problem-based learning PCR polymerase chain reaction				
FAA formalin acetic acid FTP file transfer protocol GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin OC organic carbon OD optical density OES occupational exposure standards OM organic matter PAGE polyacrylamide gel electrophoresis PAR photosynthetically active radiation PAR photosynthetically active radiation PBL problem-based learning PCR polymerase chain reaction			•	
FTP file transfer protocol OD optical density g acceleration due to gravity OES occupational exposure standards GA graduate attributes OM organic matter GC gas chromatography PAGE polyacrylamide gel electrophoresis GFP green fluorescent protein PAM pulse-amplified modulated GMO genetically modified organism PAR photosynthetically active radiation GPS global positioning system PBL problem-based learning HCG human chorionic gonadotrophin PCR polymerase chain reaction		•		,
g acceleration due to gravity GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin OM organic matter OM organic matter PAGE polyacrylamide gel electrophoresis PAM pulse-amplified modulated photosynthetically active radiation PBL problem-based learning PCR polymerase chain reaction				
GA graduate attributes GC gas chromatography GFP green fluorescent protein GMO genetically modified organism GPS global positioning system HCG human chorionic gonadotrophin OM organic matter polyacrylamide gel electrophoresis pulse-amplified modulated pulse-amplified modulated photosynthetically active radiation problem-based learning polymerase chain reaction				
GC gas chromatography PAGE polyacrylamide gel electrophoresis GFP green fluorescent protein PAM pulse-amplified modulated GMO genetically modified organism PAR photosynthetically active radiation GPS global positioning system PBL problem-based learning HCG human chorionic gonadotrophin PCR polymerase chain reaction				
GFP green fluorescent protein PAM pulse-amplified modulated GMO genetically modified organism PAR photosynthetically active radiation GPS global positioning system PBL problem-based learning HCG human chorionic gonadotrophin PCR polymerase chain reaction		•		
GMO genetically modified organism PAR photosynthetically active radiation GPS global positioning system PBL problem-based learning HCG human chorionic gonadotrophin PCR polymerase chain reaction				
GPS global positioning system PBL problem-based learning HCG human chorionic gonadotrophin PCR polymerase chain reaction				
HCG human chorionic gonadotrophin PCR polymerase chain reaction				
HEPA high-efficiency particulate air PDP personal development planning				
	HEPA	nign-efficiency particulate air	אטא	personal development planning

PEG	polyethylene glycol	SDS	sodium dodecyl sulphate
PFD	photon flux density	SE	standard error (of the sample mean)
PFU	plaque-forming unit	SEM	scanning electron microscopy
рН	-log ₁₀ proton concentration (activity), in mol m ⁻¹	SI	Systeme Internationale d'Unités
PI	photosynthetic irradiance	SLR	single lens reflex
pK_a	log ₁₀ acid dissociation constant	SPM	selectively permeable membrane
РМ̈́	particulate materials	STP	standard temperature and pressure
PMF	proton-motive force	T	absolute temperature (in kelvin)
PPFD	photosynthetic photon flux density	TCA	tricarboxylic acid
PQ	photosynthetic quotient	TEM	transmission electron microscopy
PS II	photosystem II	TEMED	tetramethylethylenediamine
PTS	personal transferable skills	TLC	thin-layer chromatography
QIP	quench indication parameter	TMB	tetramethylbenzidine
R	universal gas constant	TPMD	tetramethylphenylenediamine
RCF	relative centrifugal field	TPP ⁺	tetraphenylphosphonium
rDNA	recombinant deoxyribonucleic acid	TRIS	tris(hydroxymethyl)aminomethane or
$R_{_{\mathrm{F}}}$	relative frontal mobility		2-amino-2-hydroxymethyl-1,3-propanediol
RIA	radioimmunoassay	TS	transverse section
RID	radioimmunodiffusion	TTL	through the lens
RNA	ribonucleic acid	URL	uniform resource locator
RP-HPLC	reverse phase high-performance liquid	USB	Universal Serial Bus
	chromatography	UV	ultraviolet (radiation)
r.p.m.	revolutions per minute	V _{max}	maximum velocity
SAQ	short-answer question	WWW	World Wide Web
SD	standard deviation	XGAL	5-bromo-4-chloro-3-indolyl- β -D-galactoside (62)

Study and examination skills

1.	The importance of transferable skills	3
2.	Managing your time	9
3.	Working with others	13
4.	Taking notes from lectures and texts	18
5.	Learning effectively	23
6.	Revision strategies	30
7.	Assignments and exams	35
8.	Preparing your curriculum vitae	45

The importance of transferable skills

Skills terminology - different phrases may be used to describe transferable skills and associated personal qualities, depending on place or context. These include: 'graduate attributes', 'personal transferable skills' (PTS), 'key skills', 'core skills' and 'competences'.

Using course materials - study your course handbook and the schedules for each practical session to find out what skills you are expected to develop at each point in the curriculum. Usually the learning objectives/outcomes (p. 30) will outline the skills involved.

Example The skills involved in teamwork cannot be developed fully without a deeper understanding of the interrelationships involved in successful groups. The context will be different for every group and a flexible approach will always be required, according to the individuals involved and the nature of the task.

This chapter outlines the range of transferable skills and their significance to biologists. It also indicates where practical skills fit into this scheme. Having a good understanding of this topic will help you place your studies at university in a wider context. You will also gain an insight into the qualities that employers expect you to have developed by the time you graduate. Awareness of these matters will help when carrying out personal development planning (PDP) as part of your studies.

The range of transferable skills

Table 1.1 provides a comprehensive listing of university-level transferable skills under six skill categories. There are many possible classifications – and a different one may be used in your institution or field of study. Note particularly that 'study skills', while important, and rightly emphasised at the start of many courses, constitute only a subset of the skills acquired by most university students.

The phrase 'Practical Skills' in the title of this book indicates that there is a special area of transferable skills related to work in the laboratory or field. However, although this text deals primarily with skills and techniques required for laboratory practicals, fieldwork and associated studies, a broader range of material is included. This is because the skills concerned are important, not only in the biosciences but also in the wider world. Examples include time management, evaluating information and communicating effectively.

KEY POINT Biology is essentially a practical subject, and therefore involves highly developed laboratory and field skills. The importance that your lecturers place on practical skills will probably be evident from the large proportion of curriculum time you will spend on practical work in your course.

The word 'skill' implies much more than the robotic learning of, for example, a laboratory routine. Of course, some of the tasks you will be asked to carry out in practical classes will be repetitive. Certain techniques require manual dexterity and attention to detail if accuracy and precision are to be attained, and the necessary competence often requires practice to make perfect. However, a deeper understanding of the context of a technique is important if the skill is to be appreciated fully and then transferred to a new situation. That is why this text is not simply a 'recipe book' of methods and why it includes background information, tips and worked examples, as well as study exercises to test your understanding.

Transferability of skills

'Transferability' implies that someone with knowledge, understanding or ability gained in one situation can adapt or extend this for application in a different context. In some cases, the transfer of a skill is immediately obvious. Take, for example, the ability to use a spreadsheet to summarise biological data and create a graph to illustrate results. Once the key concepts and commands are learned (Chapter 13), they can be applied to

Table 1.1 Transferable skills identified as important in the biosciences. The list is based on the UK Quality Assurance Agency for Higher Education *Subject Benchmark Statement for the Biosciences* (QAA, 2007). Particularly relevant chapters are shown for the skills covered by this book (numbers in **bold** blue text indicate a deeper, or more extensive, treatment)

Skill category	Examples of skills and competences	Relevant chapters in this textbook
Generic skills for	Having an appreciation of the complexity and diversity of life and life processes	36-8; 39 ; 40-1; 61-2
biologists	Reading and evaluating biological literature with a full and critical understanding	4; 9; 10
	Capacity to communicate a clear and accurate account of a biological topic, both verbally and in writing	14-16 ; 17-19
	Applying critical and analytical skills to evaluate evidence regarding theories and hypotheses in biology	10; 33
	Using a variety of methods for studying biology	36-70
	Having the ability to think independently, set personal tasks and solve problems	33; 35; 74
Intellectual skills	Recognising and applying biological theories, concepts and principles	10; 33
	Analysing, synthesising and summarising information critically	10; 71-6
	Obtaining evidence to formulate and test hypotheses; applying knowledge to address familiar and unfamiliar problems	27-32; 33 ; 34-5
	Recognising and explaining moral, ethical and legal issues in biological research	21 ; 22; 31; 36; 40
Experimental (practical) and	Carrying out basic laboratory and field techniques and understanding the principles that underlie them	20 ; 22–31; 34; 40–1; 43–5
observational skills	Working in lab or field safely, responsibly and legally, with due attention to ethical aspects	20–1; 22 ; 31; 35–6; 38; 42
	Designing, planning, conducting and reporting on biological investigations and data arising from them	15; 18; 31; 33 ; 35; 52
	Obtaining, recording, collating and analysing data in the field and laboratory	27; 29; 31 ; 32–3; 36–41; 51 ; 52 ; 53–8; 71 ; 72–6
Numeracy, communication and	Understanding and using data in several forms (e.g. numerical, textual, verbal and graphical)	4; 10; 29; 71-4
IT skills	Communicating in written, verbal, graphical and visual forms	14 , 15 , 16 ; 17–19; 72 ; 73 ; 74
	Citing and referencing the work of others in an appropriate manner	9
	Obtaining data, including the concepts behind sampling and sampling errors, calibration and types of error	29; 32 ; 33; 34 ; 53 ; 71; 74; 75 ; 76
	Processing, interpreting and presenting data, and applying appropriate statistical methods for summarising and analysing data	71-4; 75 ; 76
	Solving problems with calculators and computers, including the use of tools such as spreadsheets	11; 12 ; 20 ; 74
	Using computer technology to communicate and as a source of information in biology	11 ; 12; 13
Interpersonal and teamwork skills	Working individually or in teams as appropriate; identifying individual and group goals and acting responsibly and appropriately to achieve them	3
	Recognising and respecting the views and opinions of others	3
	Evaluating your own performance and that of others	3; 8
	Appreciating the interdisciplinary nature of contemporary biology	1; 19
Self-management	Working independently, managing time and organising activities	2 ; 31; 33; 35
and professional development skills	Identifying and working towards targets for personal, academic and career development	1; 8
·	Developing an adaptable and effective approach to study and work (including revision and exam technique)	5; 6; 7

Opportunities to develop and practise skills in your private or social life - you could, for example, practise spreadsheet skills by organising personal or club finances using Microsoft Excel, or teamwork skills within any university clubs or societies you may join (see Chapter 7).

Types of PDP portfolio and their benefits -

some PDP schemes are centred on academic and learning skills, while others are more focused on career planning. They may be carried out independently or possibly in tandem with a personal tutor or advisory system. Certain PDP schemes involve creating an online portfolio, while others are primarily paper-based. Each method has specific goals and advantages, but whichever way your scheme operates, maximum benefit will be gained from fully involving yourself in the process.

Definition

Employability - the 'combination of indepth subject knowledge, work awareness, subject-specific, generic and career management skills, and personal attributes and attitudes that enable a student to secure suitable employment and perform excellently throughout a career spanning a range of employers and occupations.' (Anon, 2015: Higher Education Academy Centre for Bioscience, Define Employability in the Context of Teaching Bioscience).

many instances outside the biosciences where this type of output is used. This is not only true for similar data sets, but also in unrelated situations, such as making up a financial balance sheet and creating a pie chart to show sources of expenditure. Similarly, knowing the requirements for good graph drawing and tabulation (Chapters 72 and 73), perhaps practised by hand in earlier work, might help you use spreadsheet commands to make the output suit your needs.

Other cases may be less clear but equally valid. For example, towards the end of your undergraduate studies you may be involved in designing experiments as part of your project work. This task will draw on several skills gained at earlier stages in your course, such as preparing solutions (Chapters 23–26), deciding about numbers of replicates and experimental layout (Chapters 32 and 33) and perhaps carrying out some particular method of observation, measurement or analysis (Chapters 42–70). How and when might you transfer this complex set of skills? In the workplace, it is unlikely that you would be asked to repeat the same process, but in critically evaluating a problem or in planning a complex project for a new employer, you will need to use many of the time-management, organisational and analytical skills developed when designing and carrying out experiments. The same applies to information retrieval and evaluation and writing essays and dissertations, when transferred to the task of analysing or writing a business report.

Personal development planning

Many universities have schemes for PDP, which may go under slightly different names such as progress file or professional development plan. You will usually be expected to create a portfolio of evidence on your progress, then reflect on this, and subsequently set yourself plans for the future, including targets and action points. Analysis of your transferable skills profile will probably form part of your PDP (Box 1.1). Other aspects commonly included are:

- your aspirations, goals, interests and motivations;
- your learning style or preference (see p. 23);
- your assessment transcript or academic profile information (e.g. record of grades in your modules);
- your developing CV (see p. 45).

Taking part in PDP can help you to focus your thoughts about your university studies and future career. This is important in biology, because most biological sciences degrees do not lead only to a specific occupation. The PDP process will introduce you to some new terms and will help you to describe your personality and abilities. This will be useful when constructing your CV and when applying for jobs.

Graduate attributes and employability

The skills emphasised in biology courses (Table 1.1) are sometimes considered alongside a university-wide framework of graduate attributes that are intended to summarise the qualities and skills that an employer might expect in those with qualifications from your institution. The associated notion of 'graduateness' summarises the effect of degree-level

Box 1.1 How to carry out a personal skills audit

- 1. Create a list of appropriate skills. As noted on p. 3, there are many systems for categorising skills. If your university publishes a specific skill set, e.g. as part of its framework for PDP or graduate attributes (GA), then you should use that. If not, you could adapt the listing in Table 1.1 or consult a text such as McMillan and Weyers (2013). Your list should relate to you personally, your intended career and any specific skills associated with your intended qualification.
- 2. Lay out your list in table format. You will need to create a table using a word processor or spreadsheet program. Your table should have four columns, as shown in Table 1.2.
- 3. Rate your skills. This may be challenging for many students as it is difficult to be objective and tough to gauge employer expectations. A confident student may rate a certain skill strongly, while a self-critical person may consider the same level of skill to be deficient. However, this does not matter too much as you will effectively be comparing yourself at different stages in your learning, rather than judging yourself against an outside standard. The suggested method is to use a scale of 1 to 10, with low values indicating that the skill 'needs lots of development' and high values indicating that, for the time being, you feel your competence is 'well above average'.
- 4. Note actions. This especially applies to skills with low scores in the previous column and you may wish to prioritise certain ones. You will need to think about ways in which you could improve, and this may require some research on your part. Is there a book you could read? Is there a training workshop you could attend? Could an extracurricular activity help you to develop? Should you sign up to speak to a skills adviser? It is important that you recognise that the solution to any deficiencies you perceive lies in your own hands. At university, no one will do the work for you.
- 5. Add comments and progress notes. Here is where you can add any comments to amplify or assist with the action points. The addition of progress notes implies that you will revisit the list from time to time. If your university PDP system allows you to add the list to a portfolio, then do this.

Inevitably, your skills audit will become out of date after a period. It will still be useful, however, to look back at so you can see how you have progressed. This will give a sense of achievement and self-awareness that could be valuable when speaking to academic tutors or careers advisers and potential employers. You may wish to set up a new list at intervals, perhaps at the start of each academic year.

Table 1.2 One possible way of creating a personal skills audit. The second row provides guidance about the content of each column. The third row provides an example of possible content

Skill	Rating at [date] with notes	Proposed actions	Comments and notes on progress
You should be quite specific. It may be a good idea to subdivide complex skills like 'communication'	Provide a realistic evaluation of your competence in the skill at a specific point in time	This column will note what you intend to do to try to improve the skill. You might tick these off as completed	This column will summarise your progress. You may wish to add a revised rating
Giving spoken presentations	4/10 [3rd March 2012] Wasn't satisfied with presentation to tutorial group — nervous, a little disorganised and ppt too 'wordy'	 Read Ch 15 in Practical Skills in Biology ✓ Learn how to use advanced features of PowerPoint ✓ Ask more questions in tutorials ✓ 	Gave second presentation to tutorial group; went well, although quite nervous at start. Slides much better. Make sure not to rush the introduction next time. 7/10

experience and learning on an individual. This in turn is connected with the concept of 'employability' which encompasses those skills and qualities required to gain and maintain employment. An understanding of these notions is important for every student, as this not only leads to a better understanding of the value of certain activities and assessments, but also provides a specialised vocabulary and gives insights about personal and career development.

At the end of your course, which may seem some time away, you will aim to get a job and start on your chosen career path. You will need to sell yourself to your future employer, firstly in your application form and curriculum vitae (Chapter 8), and perhaps later at interview. Companies rarely employ bioscience graduates simply because they know how to carry out a particular lab routine or because they can recall specific facts about their chosen degree subject. Instead, they will be looking for a range of graduate-level skills and attributes. Typically, for example, they will seek employees who can demonstrate the ability to work in a team, to speak effectively and write clearly about their work. All of these skills and attributes can be developed at different stages during your university studies.

KEY POINT Factual knowledge can be important in degrees with a strong vocational element, but understanding how to find and evaluate information is usually rated more highly by employers than the ability to memorise facts.

Most likely, your future employer(s) will seek someone with an organised yet flexible mind, capable of demonstrating a logical approach to problems – someone who has a range of skills and who can transfer these skills to new situations. Many competing applicants will probably have similar qualifications. If you want the job, you will have to show that your additional skills and personal attributes place you above the other candidates.

Text references

Anon. Define employability in the context of teaching bioscience. Available at http://www.bioscience. heacademy.ac.uk/ftp/events/empforum/definition.pdf Last accessed 12/02/15.

[Part of the HE Academy Centre for Bioscience website.]

McMillan, K.M. and Wevers, J.D.B. (2013) The Study Skills Book, 3rd edn. Pearson Education, Harlow.

Sources for further study

Drew, S. and Bingham, R. (2010) The Guide to Learning and Study Skills. Gower Publishing Ltd, Aldershot.

QAA (2007) Subject benchmark statement – Biosciences 2007. Available: http://www.gaa.ac.uk/academicinfra structure/benchmark/statements/biosciences07.asp Last accessed 12/02/15.

[Part of the Quality Assurance Agency Academic Infrastructure.]

Race, P. (2007) How to Get a Good Degree: Making the Most of Your Time at University, 2nd edn. Open University Press, Buckingham.

STUDY EXERCISES

- 1.1 Evaluate your skills. Examine the list of skill topics shown in Table 1.1. Now create a new table with two columns, like the one on the right-hand side. The first half of this table should indicate five skills you feel confident about in column 1 and show where you demonstrated this skill in column 2 (for example, 'working in a team' and 'in a first year group project on marine biology'). The second half of the table should show five skills you do not feel confident about, or you recognise need development (e.g. communicating in verbal form). List these in column 1 and in column 2 list ways in which you think the course material and activities in your current modules will provide you with the opportunity to develop these skills.
- **1.2 Find skills resources.** For at least one of the skills in the second half of the table in Study exercise 1.1, check your university's library database to see if there are any texts on that subject. Borrow an appropriate book and read the relevant sections. Alternatively, carry out a search for relevant websites (there are many); decide which are useful and bookmark them for future use (see Chapter 11).

Skills I feel confident about	Where demonstrated
1.	
2.	
3.	
4.	
5.	
Skills that I could develop	Opportunities for development
Skills that I could develop 6.	
<u> </u>	
6.	
6. 7.	

1.3 Analyse your goals and aspirations. Spend a little time thinking what you hope to gain from university. See if your friends have the same aspirations. Think about and/or discuss how these goals can be achieved, while keeping the necessary balance between university work, paid employment and your social life.

Answers to these study exercises are available at www.pearsoned.co.uk/practicalskills

Managing your time

Definition

Time management - a system for controlling and using time as efficiently and as effectively as possible.

Advantages of time management these include:

- a much greater feeling of control over vour activities:
- avoidance of stress:
- improved productivity achieve more in a shorter period;
- improved performance levels work to higher standards because you are in
- an increase in time available for nonwork matters - work hard, but play hard too.

Example The objective 'to spend an extra hour each week on directed study in microbiology next term' fulfils the SMART criteria, in contrast to a general intention 'to study more'.

One of the most important activities that you can do is to organise your personal and working time effectively. There is a lot to do at university and a common complaint is that there is just not enough time to accomplish everything. In fact, research shows that most people use up a lot of their time without realising it through ineffective study or activities such as extended coffee breaks. Developing your time-management skills will help you achieve more in work, rest and play, but it is important to remember that putting time-management techniques into practice is an individual matter, requiring a level of self-discipline not unlike that required for dieting. A new system will not always work perfectly straight away, but through time you can evolve a system that is effective for you. An inability to organise your time effectively, of course, results in feelings of failure, frustration, guilt and being out of control in your life.

Setting your goals

The first step is to identify clearly what you want to achieve, both in work and in your personal life. We all have a general idea of what we are aiming for, but to be effective, your goals must be clearly identified and priorities allocated. Clear, concise objectives can provide you with a framework in which to make these choices. Try using the 'SMART' approach, in which objectives should be:

- Specific clear and unambiguous, including what, when, where, how and why.
- Measurable having quantified targets and benefits to provide an understanding of progress.
- **Achievable** being attainable within your resources.
- **Realistic** being within your abilities and expectations.
- **Timed** stating the time period for completion.

Having identified your goals, you can now move on to answer four very important questions:

- 1. Where does your time go?
- 2. Where should your time go?
- 3. What are your time-wasting activities?
- 4. What strategies can help you?

Analysing your current activities

The key to successful development of time management is a realistic knowledge of how you currently spend your time. Start by keeping a detailed time log for a typical week (Fig. 2.1), but you will need to be truthful in this process. Once you have completed the log, consider the following questions:

- How many hours do I work in total and how many hours do I use for 'relaxation'?
- What range of activities do I do?